This paper assesses annual and seasonal trends in runoff and sediment load resulting from climate variability and afforestation in an upland Mediterranean basin, the Ribera Salada (NE Iberian Peninsula). We implemented a hydrological and sediment transport distributed model (TETIS) with a daily time-step, using continuous discharge and sediment transport data collected at a monitoring station during the period 2009-2013. Once calibrated and validated, the model was used to simulate the hydrosedimentary response of the basin for the period 1971-2014 using historical climate and land use data. Simulated series were further used to (i) detect sediment transport and hydrologic trends at different temporal scales (annual, seasonal); (ii) assess changes in the contribution of extreme events (i.e. low and high flows) and (ii) assess the relative effect of forest expansion and climate variability on trends observed by applying a scenario of constant land use. The non-parametric Mann-Kendall test indicated upward trends for temperature and decreasing trends (although non-significant) for precipitation. Downward trends occurred for annual runoff, and less significantly for sediment yield. Reductions in runoff were less intense when afforestation was not considered in the model, while trends in sediment yield were reversed. Results also indicated that an increase in the river's torrential behaviour may have occurred throughout the studied period, with low and high flow events gaining importance with respect to the annual contribution, although its magnitude was reduced over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2015.07.005 | DOI Listing |
J Contam Hydrol
January 2025
USDA ARS, National Soil Erosion Research Laboratory, West Lafayette, IN 47907, United States of America.
Agricultural phosphorus (P) losses may result from either recently applied fertilizers or from P accumulated in soil and sediment. While both P sources pose an environmental risk to freshwater systems, differentiating between sources is crucial for identifying and implementing management practices to decrease loss. In this study, laboratory rainfall simulations were completed on runoff boxes and undisturbed soil columns before and after fertilizer application.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Chemical Oceanography, Cochin University of Science and Technology, Cochin 682016, India. Electronic address:
This study examines the presence of potentially toxic elements (PTEs) in the surface sediments and water of the Ashtamudi wetland, a Ramsar site on India's southwest coast. The average concentration of PTEs in water(μg/L) and in sediments (mg/kg) follows the order Fe(147.89) > Zn(107.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Biological Systems Engineering, Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, USA.
The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:
Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand.
Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!