The objective in this study was to test the hypothesis that the GABA-synthesizing enzyme, glutamic acid decarboxylase (Gad67), expressed in striatal neurons plays a key role in dyskinesia induced by L-DOPA (LID) in a rodent model of Parkinson's disease. In light of evidence that the dopamine Drd1a receptor is densely expressed in striatal direct pathway striatal neurons while the orphan G-protein-coupled receptor Gpr88 is densely expressed in striatal direct and indirect pathway striatal neurons, we used a cre-lox strategy to produce two lines of mice that were Gad1 (Gad1 is the gene encoding for Gad67)-deficient in neurons expressing the Drd1a or the Gpr88 receptor. Gad67 loss in Gpr88-expressing neurons mice did not result in gross motor abnormalities while mice with Gad67 loss in Drd1a-expressing neurons were impaired on the Rotarod and the pole test. Knockout and control littermate mice were unilaterally injected into the medial forebrain bundle with 6-hydroxydopamine (6-OHDA) in order to lesion dopamine neurons on one side of the brain. 6-OHDA-lesioned mice were then injected once daily for 10 days with L-DOPA. Mice with a Gad67 loss in Gpr88-expressing neurons and control littermates developed abnormal involuntary movements (AIM), a measure of dyskinesia. In contrast, mice with a Gad67 loss in Drd1a-expressing did not develop AIM. The results demonstrate that Gad67 in Drd1a-expressing neurons plays a key role in the development of LID and they support the hypothesis that altered GABAergic neurotransmission in the direct pathway is involved in dyskinesia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2015.07.032DOI Listing

Publication Analysis

Top Keywords

striatal neurons
16
gad67 loss
16
expressed striatal
12
mice gad67
12
neurons
10
glutamic acid
8
acid decarboxylase
8
decarboxylase gad67
8
neurons expressing
8
mice
8

Similar Publications

Neuroanatomical distribution of endogenous huntingtin and its immunohistochemical relationships with STB/HAP1 in the adult mouse brain and spinal cord.

Neurosci Res

January 2025

Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan; School of Human Care Studies, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nishin city, Aichi 470-0196, Japan. Electronic address:

Huntingtin-associated protein 1 (HAP1) is an essential constituent of the stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for several neurodegenerative disorders, including huntingtin (HTT) in Huntington's disease. Previous in vitro studies showed that compared to normal HTT, STB/HAP1 exhibited a higher binding affinity for mutant HTT. However, the detailed in vivo relationships of STB/HAP1 with endogenous HTT have not been clarified yet.

View Article and Find Full Text PDF

Mu opioid receptors expressed in striatal D2 medium spiny neurons have divergent contributions to cocaine and morphine reward.

Neuroscience

January 2025

Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Waggoner Center for Alcohol & Addiction Research, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA. Electronic address:

While our understanding of the neurobiological mechanisms underlying cocaine and opiate reward has historically been dopamine-focused, evidence from genetic and pharmacological approaches indicates that µ-opioid receptors (MORs) in the striatum are important contributors. Within the striatum, MORs are expressed in both dopamine D1-receptor and D2-receptor expressing GABAergic medium spiny neurons (MSNs), as well as in interneurons and various afferents. Thus, it remains unclear how these distinct MOR populations regulate drug reward.

View Article and Find Full Text PDF

Neuromodulatory signaling is poised to serve as a neural mechanism for gain control, acting as a crucial tuning factor to influence neuronal activity by dynamically shaping excitatory and inhibitory fast neurotransmission. The endocannabinoid (eCB) signaling system, the most widely expressed neuromodulatory system in the mammalian brain, is known to filter excitatory and inhibitory inputs through retrograde, pre-synaptic action. However, whether eCBs exert retrograde gain control to ultimately facilitate reward-seeking behaviors in freely moving mammals is not established.

View Article and Find Full Text PDF

In the later stages of Parkinson's disease (PD), patients often manifest levodopa-induced dyskinesia (LID), compromising their quality of life. The pathophysiology underlying LID is poorly understood, and treatment options are limited. To move toward filling this treatment gap, the intrinsic and synaptic changes in striatal spiny projection neurons (SPNs) triggered by the sustained elevation of dopamine (DA) during dyskinesia were characterized using electrophysiological, pharmacological, molecular and behavioral approaches.

View Article and Find Full Text PDF

Neurotransmitter and metabolic effects of interferon-alpha in association with decreased striatal dopamine in a Non-Human primate model of Cytokine-Induced depression.

Brain Behav Immun

January 2025

Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA. Electronic address:

Inflammatory stimuli administered to humans and laboratory animals affect mesolimbic and nigrostriatal dopaminergic pathways in association with impaired motivation and motor activity. Alterations in dopaminergic corticostriatal reward and motor circuits have also been observed in depressed patients with increased peripheral inflammatory markers. The effects of peripheral inflammation on dopaminergic pathways and associated neurobiologic mechanisms and consequences have been difficult to measure in patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!