Pituitary dendritic cells communicate immune pathogenic signals.

Brain Behav Immun

Neuroimmunology & Inflammation Program, The Rockefeller University, New York, NY 10065, United States. Electronic address:

Published: November 2015

This study reveals the presence of dendritic cells (DCs) in the pituitary gland, which play a role in communicating immune activation to the hypothalamic pituitary adrenal (HPA) axis. Using enhanced yellow fluorescent protein (eyfp) expression as a reporter for CD11c, a marker of DCs, we demonstrate anatomically the presence of CD11c/eyfp+ cells throughout the pituitary. Flow cytometric analysis shows that the predominant cellular phenotype of pituitary CD11c/eyfp+ cells resembles that of non-lymphoid DCs. In vivo and in vitro immune challenge with lipopolysaccharide (LPS) stimulates these pituitary CD11c/eyfp+ DCs, but not eyfp(neg) cells, to increase levels of pro-inflammatory cytokines, IL-6, IL-1β, and TNF-α. In vivo analysis of plasma glucocorticoid (GC) and adrenocorticotropic hormone (ACTH) levels at this early phase of the immune response to LPS suggest that pro-inflammatory cytokine production by DCs within the pituitary may activate the release of GCs from the adrenals via ACTH. Pituitary CD11c/eyfp+ cells also express annexin A1 (ANXA1), indicating a role in GC signal attenuation. In summary, our data demonstrate that a resident DC population of the pituitary gland coordinates GC release in the early phase of systemic immune activation, thereby providing an essential immune signaling sentinel for the initial shaping of the systemic immune response to LPS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2015.07.007DOI Listing

Publication Analysis

Top Keywords

cd11c/eyfp+ cells
12
pituitary cd11c/eyfp+
12
pituitary
9
dendritic cells
8
dcs pituitary
8
pituitary gland
8
immune activation
8
early phase
8
immune response
8
response lps
8

Similar Publications

Myeloid Cells in the Mouse Retina and Uveal Tract Respond Differently to Systemic Inflammatory Stimuli.

Invest Ophthalmol Vis Sci

August 2021

Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia.

Purpose: In spite of clear differences in tissue function and significance to ocular disease, little is known about how immune responses differ between the retina and uveal tract. To this end we compared the effects of acute systemic inflammation on myeloid cells within the mouse retina, iris-ciliary body, and choroid.

Methods: Systemic inflammation was induced in Cx3cr1gfp/gfp and CD11c-eYFP Crb1wt/wtmice by intraperitoneal lipopolysaccharide (LPS).

View Article and Find Full Text PDF

The extension of the lesion following spinal cord injury (SCI) poses a major challenge for regenerating axons, which must grow across several centimetres of damaged tissue in the absence of ordered guidance cues. Biofunctionalized electroconducting microfibres (MFs) that provide biochemical signals, as well as electrical and mechanical cues, offer a promising therapeutic approach to help axons overcome this blind journey. We used poly(3,4-ethylenedioxythiophene)-coated carbon MFs functionalized with cell adhesion molecules and growth factors to bridge the spinal cord after a partial unilateral dorsal quadrant lesion (PUDQL) in mice and followed cellular responses by intravital two-photon (2P) imaging through a spinal glass window.

View Article and Find Full Text PDF

Successful sperm maturation and storage rely on a unique immunological balance that protects the male reproductive organs from invading pathogens and spermatozoa from a destructive autoimmune response. We previously characterized one subset of mononuclear phagocytes (MPs) in the murine epididymis, CX3CR1 cells, emphasizing their different functional properties. This population partially overlaps with another subset of understudied heterogeneous MPs, the CD11c cells.

View Article and Find Full Text PDF

Effects of VEGF blockade on the dynamics of the inflammatory landscape in glioblastoma-bearing mice.

J Neuroinflammation

October 2019

CNRS, Institut des Neurosciences de la Timone, UMR 7289, Aix-Marseille Univ, 27 Boulevard Jean Moulin, 13005, Marseille, France.

Background: Targeting angiogenesis has been and continues to be an attractive therapeutic modality in glioblastoma (GBM) patients. However, GBM rapidly becomes refractory to anti-VEGF therapies. Myeloid cell infiltration is an important determinant of tumor progression.

View Article and Find Full Text PDF

In both multiple sclerosis and its model experimental autoimmune encephalomyelitis (EAE), the extent of resident microglia activation and infiltration of monocyte-derived cells to the CNS is positively correlated to tissue damage. To address the phenotype characterization of different cell subsets, their spatio-temporal distributions and contributions to disease development we induced EAE in Thy1-CFP//LysM-EGFP//CD11c-EYFP reporter mice. We combined high content flow cytometry, immunofluorescence and two-photon imaging in live mice and identified a stepwise program of inflammatory cells accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!