The multigene families of actinoporins (part I): Isoforms and genetic structure.

Toxicon

Biochemistry Department and Center for Protein Studies, Faculty of Biology, Havana University, Cuba.

Published: September 2015

Actinoporins are basic pore-forming proteins produced by sea anemones, with molecular weight around 20 kDa showing high affinity for sphingomyelin-containing membranes. Most sea anemones produce more than one actinoporin isoform differing in isoelectric point, molecular weigth and cytolytic activity. Examples of sea anemones with actinoporin isoforms are: Actinia equina with at least five isoform genes; Actinia tenebrosa, three isoforms; Actinia fragacea, five isoforms; Actineria villosa, Phyllodiscus semoni, Stichodactyla helianthus and Oulactis orientalis, with two isoforms each one, and Heteractis crispa with twenty-four isoforms. Additionally, thirty-four different amino acid sequences were deduced from fifty-two nucleotide sequences of Heteractis magnifica toxins suggesting the presence of a large number of isoforms or allelic variants. Many amino acidic changes in the isoforms are located in important regions for pore formation. The genetic structure of actinoporins comprises a pre-propeptide and a mature toxin region; therefore, actinoporins could be synthetized in the Golgi apparatus as precursor forms. The subsequent maturation of the toxins involves a proteolytic processing during secretion. Here we hypothesize that sea anemones could have suffered duplication, conversion and mutation of genes that produced multigene families as an efficient response to evolutionary pressure, leading to successful strategies of predatory and defensive function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2015.06.028DOI Listing

Publication Analysis

Top Keywords

sea anemones
16
multigene families
8
isoforms
8
genetic structure
8
structure actinoporins
8
isoforms actinia
8
actinoporins
4
families actinoporins
4
actinoporins isoforms
4
isoforms genetic
4

Similar Publications

Proteomic Analysis Is Needed to Understand the Vulnerability of Sea Anemones to Climate Change.

J Proteome Res

January 2025

Department of Hydrobiology, Division of Biological and Health Sciences, Ecotoxicology Laboratory, Universidad Autónoma Metropolitana, Iztapalapa Unit, Mexico City C. P. 09340, Mexico.

Sea anemones play a crucial role in marine ecosystems. Recent studies have highlighted their physiological and ecological responses to thermal stress. Therefore, our objective was to perform a proteomic analysis of sea anemones in the Gulf of Mexico, subjected to thermal stress, to understand whether these organisms activate specific processes to resist increased temperature.

View Article and Find Full Text PDF

Fatty Acids in Cnidaria: Distribution and Specific Functions.

Mar Drugs

January 2025

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok 690041, Russia.

The phylum Cnidaria comprises five main classes-Hydrozoa, Scyphozoa, Hexacorallia, Octocorallia and Cubozoa-that include such widely distributed and well-known animals as hard and soft corals, sea anemones, sea pens, gorgonians, hydroids, and jellyfish. Cnidarians play a very important role in marine ecosystems. The composition of their fatty acids (FAs) depends on food (plankton and particulate organic matter), symbiotic photosynthetic dinoflagellates and bacteria, and de novo biosynthesis in host tissues.

View Article and Find Full Text PDF

De-novo Genome Assembly of the Edwardsiid Anthozoan Edwardsia elegans.

G3 (Bethesda)

January 2025

Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28223.

Cnidarians (sea anemones, corals, hydroids, and jellyfish) are a key outgroup for comparisons with bilaterial animals to trace the evolution of genomic complexity and diversity within the animal kingdom, as they separated from most other animals 100s of millions of years ago. Cnidarians have extensive diversity, yet the paucity of genomic resources limits our ability to compare genomic variation between cnidarian clades and species. Here we report the genome for Edwardsia elegans, a sea anemone in the most specious genus of the family Edwardsiidae, a phylogenetically important family of sea anemones that contains the model anemone Nematostella vectensis.

View Article and Find Full Text PDF

Symbiotic cnidarians, such as sea anemones and corals, rely on their mutualistic microalgal partners (Symbiodiniaceae) for survival. Marine heatwaves can disrupt this partnership, and it has been proposed that introducing experimentally evolved, heat-tolerant algal symbionts could enhance host thermotolerance. To test this hypothesis, the sea anemone Exaiptasia diaphana (a coral model) was inoculated with either the heterologous wild type or heat-evolved algal symbiont, Cladocopium proliferum, and homologous wild-type Breviolum minutum.

View Article and Find Full Text PDF

Leaving the incubation chamber: Cellular and physiological challenges of the juvenile stage of the sea anemone Anthopleura hermaphroditica (Carlgren, 1899) to cope with fluctuating environmental stressors in the Quempillén estuary, southern Chile.

Mar Environ Res

January 2025

Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.

Environmental stress on early life stages has severe consequences for individual performance and population dynamics. The internal incubation process of the symbiotic intertidal anemone Anthopleura hermaphroditica ends when the juveniles leave the gastrovascular cavity of the adult, at which moment they are exposed to a highly stressful environment due to tidal changes and environmental radiation in the Quempillén estuary. To determine the cellular and physiological tolerance capabilities of juvenile anemones to changes in salinity and environmental radiation resulting from the abandonment of the gastrovascular cavity, an experiment with an orthogonal design was performed on individuals exposed to four levels of salinity (30.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!