Differential effects of polyoma virus middle tumor antigen mutants upon gap junctional, intercellular communication.

Exp Cell Res

Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L 3N6. Electronic address:

Published: August 2015

Gap junctions are channels that connect the cytoplasm of adjacent cells. Oncogenes such as the middle Tumor antigen of polyoma virus (mT) are known to suppress gap junctional, intercellular communication (GJIC). mT associates with and is tyrosine-phosphorylated by cSrc family members. Specific mT phosphotyrosines provide docking sites for the phosphotyrosine binding domain of Shc (mT-tyr250) or the SH2 domain of the regulatory subunit of the phosphatidylinositol-3 kinase (PI3k, mT-tyr315). Binding results in the activation of their downstream signaling cascades, Ras/Raf/Erk and PI3 kinase/Akt, respectively, both of which are needed for full neoplastic transformation. To examine the effect of mT-initiated pathways upon gap junctional communication, GJIC was quantitated in rat liver epithelial T51B cells expressing mT-mutants, using a novel technique of in situ electroporation. The results demonstrate for the first time that, although even low levels of wild-type mT are sufficient to interrupt gap junctional communication, GJIC suppression still requires an intact tyr-250 site, that is activation of the Ras pathway. In sharp contrast, activation of the PI3k pathway is not required for GJIC suppression, indicating that GJIC suppression is independent of full neoplastic conversion and the concomitant morphological changes. Interestingly, expression of a constitutively active, myristylated form of the catalytic subunit of PI3k, p110, or the constitutively active mutants E545K and H1047R increased GJIC, while pharmacological inhibition of PI3k eliminated communication. Therefore, although PI3k is growth promoting and in an activated form it can act as an oncogene, it actually plays a positive role upon gap junctional, intercellular communication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2015.07.013DOI Listing

Publication Analysis

Top Keywords

gap junctional
20
junctional intercellular
12
intercellular communication
12
communication gjic
12
gjic suppression
12
polyoma virus
8
middle tumor
8
tumor antigen
8
full neoplastic
8
junctional communication
8

Similar Publications

Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms.

View Article and Find Full Text PDF

Role of astrocytes connexins - pannexins in acute brain injury.

Neurotherapeutics

January 2025

Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile. Electronic address:

Acute brain injuries (ABIs) encompass a broad spectrum of primary injuries such as ischemia, hypoxia, trauma, and hemorrhage that converge into secondary injury where some mechanisms show common determinants. In this regard, astroglial connexin and pannexin channels have been shown to play an important role. These channels are transmembrane proteins sharing similar topology and form gateways between adjacent cells named gap junctions (GJs) and pores into unopposed membranes named hemichannels (HCs).

View Article and Find Full Text PDF

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

View Article and Find Full Text PDF

Electrical performances of a biphenyl-derived amido Schiff base ligand L and its dinuclear Al(iii) complex (complex 1) were investigated in a metal-semiconductor (MS) junction. Electrical studies revealed that complex 1 significantly enhanced the electrical conductivity and improved the characteristics of a Schottky barrier diode (SBD). The - characteristics demonstrated that complexation of ligand L with Al(iii) ion increased the conductivity by two orders of magnitude (conductivity of L = 1.

View Article and Find Full Text PDF

Evaluation of unitary conductance of gap junction channels based on stationary fluctuation analysis.

Methods

January 2025

Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas 50103, Lithuania; Department of Mathematical Modelling, Kaunas University of Technology, Kaunas 51368, Lithuania.

Gap junction (GJ) channels, formed of connexin (Cx) protein, enable direct intercellular communication in most vertebrate tissues. One of the key biophysical characteristics of these channels is their unitary conductance, which can be affected by mutations in Cx genes and various biochemical factors, such as posttranslational modifications. Due to the unique intercellular configuration of GJ channels, recording single-channel currents is challenging, and precise data on unitary conductances of some Cx isoforms remain limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!