The National Institute of Nursing Research (NINR) intramural research program conducts basic and biobehavioral symptom science research and provides training opportunities to the next generation of scientists. Recently, the NINR developed the Symptom Science Model to guide research. The model begins by identifying a complex symptom, which is then characterized into a phenotype with biological and clinical data, followed by the application of genomic and other discovery methodologies to illuminate targets for therapeutic and clinical interventions. Using the Symptom Science Model, the intramural program organizes and implements biobehavioral, symptom management, and tissue injury research. The model is also used as a framework for training and career development opportunities including on-campus trainings and research fellowship. The scientific goal of the intramural program is to enhance patient outcomes including health-related quality of life. Achieving this goal requires a long-term vision, continued resource investments, and a commitment to mentoring our next generation of scientists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507439PMC
http://dx.doi.org/10.1016/j.outlook.2015.03.001DOI Listing

Publication Analysis

Top Keywords

intramural program
16
symptom science
16
science model
12
national institutes
8
biobehavioral symptom
8
generation scientists
8
symptom
6
model
5
institutes health/national
4
health/national institutes
4

Similar Publications

We report a case of Acanthamoeba infection in an HCT recipient with steroid-refractory GVHD. We highlight the multiple challenges that free-living ameba infections present to the clinician, the clinical laboratory, transplant infectious disease for review, hospital epidemiology if nosocomial transmission is considered, and public health officials, as exposure source identification can be a significant challenge. Transplant physicians should include Acanthamoeba infections in their differential diagnosis of a patient with skin, sinus, lung, and/or brain involvement.

View Article and Find Full Text PDF

Dysfunction of dopamine systems has long been considered a hallmark of schizophrenia, and nearly all current first-line medication treatments block dopamine D receptors. However, approximately a quarter of patients will not adequately respond to these agents and are considered treatment-resistant. Whereas abnormally high striatal presynaptic dopamine synthesis capacity has been observed in people with schizophrenia, studies of treatment-resistant patients have not shown this pattern and have even found the opposite - i.

View Article and Find Full Text PDF

Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life.

View Article and Find Full Text PDF

Liver Cancer Neuroscience: Regulating Liver Tumors via Selective Hepatic Vagotomy.

Methods Protoc

December 2024

Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Both the prevalence and mortality of liver cancers continue to rise. Early surgical interventions, including liver transplantation or resection, remain the only curative treatment. Nerves in the periphery influence tumor growth within visceral organs.

View Article and Find Full Text PDF

Design of Small Non-Peptidic Ligands That Alter Heteromerization between Cannabinoid CB and Serotonin 5HT Receptors.

J Med Chem

December 2024

Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain.

Activation of cannabinoid CB receptors (CBR) by agonists induces analgesia but also induces cognitive impairment through the heteromer formed between CBR and the serotonin 5HT receptor (5HTR). This side effect poses a serious drawback in the therapeutic use of cannabis for pain alleviation. Peptides designed from the transmembrane helices of CBR, which are predicted to bind 5HTR and alter the stability of the CBR-5HTR heteromer, have been shown to avert CBR agonist-induced cognitive impairment while preserving analgesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!