Transactivation activity and nucleocytoplasmic transport of β-catenin are independently regulated by its C-terminal end.

Gene

Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile. Electronic address:

Published: November 2015

The key protein in the canonical Wnt pathway is β-catenin, which is phosphorylated both in absence and presence of Wnt signals by different kinases. Upon activation in the cytoplasm, β-catenin can enter into the nucleus to transactivate target gene expression, many of which are cancer-related genes. The mechanism governing β-catenin's nucleocytoplasmic transport has been recently unvealed, although phosphorylation at its C-terminal end and its functional consequences are not completely understood. Serine 646 of β-catenin is a putative CK2 phosphorylation site and lies in a region which has been proposed to be important for its nucleocytoplasmic transport and transactivation activity. This residue was mutated to aspartic acid mimicking CK2-phosphorylation and its effects on β-catenin activity as well as localization were explored. β-Catenin S6464D did not show significant differences in both transcriptional activity and nuclear localization compared to the wild-type form, but displayed a characteristic granular nuclear pattern. Three-dimensional models of nuclei were constructed which showed differences in number and volume of granules, being those from β-catenin S646D more and smaller than the wild-type form. FRAP microscopy was used to compare nuclear export of both proteins which showed a slightly higher but not significant retention of β-catenin S646D. Altogether, these results show that C-terminal phosphorylation of β-catenin seems to be related with its nucleocytoplasmic transport but not transactivation activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2015.07.039DOI Listing

Publication Analysis

Top Keywords

nucleocytoplasmic transport
16
transactivation activity
12
β-catenin
9
transport transactivation
8
wild-type form
8
β-catenin s646d
8
nucleocytoplasmic
4
activity nucleocytoplasmic
4
transport
4
transport β-catenin
4

Similar Publications

HDAC1 and HDAC2 Are Involved in Influenza A Virus-Induced Nuclear Translocation of Ectopically Expressed STAT3-GFP.

Viruses

December 2024

Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

Influenza A virus (IAV) remains a pandemic threat. Particularly, the evolution and increased interspecies and intercontinental transmission of avian IAV H5N1 subtype highlight the importance of continuously studying the IAV and identifying the determinants of its pathogenesis. Host innate antiviral response is the first line of defense against IAV infection, and the transcription factor, the signal transducer and activator of transcription 3 (STAT3), has emerged as a critical component of this response.

View Article and Find Full Text PDF

Nuclear transport protein suppresses Tau neurodegeneration.

Adv Protein Chem Struct Biol

January 2025

Neural Development Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.

The nuclear pore complex, a large multimeric structure consists of numerous protein components, serves as a crucial gatekeeper for the transport of macromolecules across the nuclear envelope in eukaryotic cells. Dysfunction of the NPC has been implicated in various neurodegenerative diseases, including Alzheimer's disease. In AD, Tau aggregates interact with NPC proteins, known as nucleoporins, leading to disruptions in nuclear transport.

View Article and Find Full Text PDF

Nuclear Tau accumulation in Alzheimer's disease.

Adv Protein Chem Struct Biol

January 2025

Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.

Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity.

View Article and Find Full Text PDF

Role of lamins in cellular physiology and cancer.

Adv Protein Chem Struct Biol

January 2025

Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India. Electronic address:

Lamins, which are crucial type V intermediate filament proteins found in the nuclear lamina, are essential for maintaining the stability and function of the nucleus in higher vertebrates. They are classified into A- and B-types, and their distinct expression patterns contribute to cellular survival, development, and functionality. Lamins emerged during the transition from open to closed mitosis, with their complexity increasing alongside organism evolution.

View Article and Find Full Text PDF

The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!