The visualization of an image collection is the process of displaying a collection of images on a screen under some specific layout requirements. This paper focuses on an important problem that is not well addressed by the previous methods: visualizing image collections into arbitrary layout shapes while arranging images according to user-defined semantic or visual correlations (e.g., color or object category). To this end, we first propose a property-based tree construction scheme to organize images of a collection into a tree structure according to user-defined properties. In this way, images can be adaptively placed with the desired semantic or visual correlations in the final visualization layout. Then, we design a two-step visualization optimization scheme to further optimize image layouts. As a result, multiple layout effects including layout shape and image overlap ratio can be effectively controlled to guarantee a satisfactory visualization. Finally, we also propose a tree-transfer scheme such that visualization layouts can be adaptively changed when users select different "images of interest." We demonstrate the effectiveness of our proposed approach through the comparisons with state-of-the-art visualization techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2015.2448236DOI Listing

Publication Analysis

Top Keywords

visualization optimization
8
image collection
8
semantic visual
8
visual correlations
8
visualization
6
image
5
layout
5
tree-based visualization
4
optimization image
4
collection
4

Similar Publications

Arbuscular mycorrhizal (AM) fungi engage in symbiotic relationships with plants, influencing their phosphate (Pi) uptake pathways, metabolism, and root cell physiology. Despite the significant role of Pi, its distribution and response dynamics in mycorrhizal roots remain largely unexplored. While traditional techniques for Pi measurement have shed some light on this, real-time cellular-level monitoring has been a challenge.

View Article and Find Full Text PDF

Background: Vocal therapy, such as singing training, is an increasingly popular pulmonary rehabilitation program that has improved respiratory muscle status in patients with chronic obstructive pulmonary disease (COPD). However, variations in singing treatment protocols have led to inconsistent clinical outcomes.

Objective: This study aims to explore the content of vocalization training for patients with COPD by observing differences in respiratory muscle activation across different vocalization tasks.

View Article and Find Full Text PDF

To analyze the refractive accuracy of a novel swept-source optical coherence biometer (SS-OCT), that uses individual refractive indices to measure axial length, in short and long eyes implanted with monofocal intraocular lenses (IOLs). This retrospective comparative study considered eyes with short axial length (AL) (< 22.5 mm) or long AL (> 26 mm) bilaterally implanted with the Acrysof IQ monofocal IOL.

View Article and Find Full Text PDF

Background: Chitosan nanoparticles (CsNPs) are an effective and inexpensive approach for DNA delivery into live cells. However, most CsNP synthesis protocols are not optimized to allow long-term storage of CsNPs without loss of function. Here, we describe a protocol for CsNP synthesis, lyophilization, and sonication, to store CsNPs and maintain transfection efficiency.

View Article and Find Full Text PDF

Significance: Stimulus-evoked intrinsic optical signal (IOS) changes in retinal photoreceptors are critical for functional optoretinography (ORG). Optical coherence tomography (OCT), with its depth-resolved imaging capability, has been actively explored for IOS imaging of retinal photoreceptors. However, recent OCT studies have reported conflicting results regarding light-induced changes in the photoreceptor outer segments (OSs), with both elongation and shrinkage being observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!