Use of phorate as a broad spectrum pesticide in agricultural crops is finding disfavor due to persistence of both the principal compound as well as its toxic residues in soil. Three phorate utilizing bacterial species (Pseudomonas sp. strain Imbl 4.3, Pseudomonas sp. strain Imbl 5.1, Pseudomonas sp. strain Imbl 5.2) were isolated from field soils. Comparative phorate degradation analysis of these species in liquid cultures identified Pseudomonas sp. strain Imbl 5.1 to cause complete metabolization of phorate during seven days as compared to the other two species in 13 days. In soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil), Pseudomonas sp. strain Imbl 5.1 resulted in active metabolization of phorate by between 94.66% and 95.62% establishing the same to be a potent bacterium for significantly relieving soil from phorate residues. Metabolization of phorate to these phorate residues did not follow the first order kinetics. This study proves that Pseudomonas sp. strain Imbl 5.1 has huge potential for active bioremediation of phorate both in liquid cultures and agricultural soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2015.07.007 | DOI Listing |
Microb Biotechnol
January 2025
Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton-driven symporter, the import of glucose is mediated by an ABC-type transporter, and hence both require energy.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.
Our understanding of the basic relationships of microbiota associated with flowers is still quite limited, especially regarding parasitic plant species. The transient nature of flower parts such as pistil stigmas provides a unique opportunity for temporal investigations. This is the first report of the analysis of bacterial and fungal communities associated with the pistil stigmas of the lucerne parasite, Orobanche lutea.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China. Electronic address:
3,5-Dichloroaniline (3,5-DCA) is extensively used in synthesizing dicarboximide fungicides, medical compounds and dyes. Due to its widespread use in agriculture and industry, 3,5-DCA is often detected in groundwater, wastewater, sediments and soil, posing great risk to animals and humans. However, the genes and enzymes involved in 3,5-DCA degradation remain unidentified.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Laboratory of Molecular Microbiology (Micromol), Institute of Biomedical Sciences, Universidade Federal de Uberlndia, Uberlndia, Minas Gerais, Brazil.
In critically ill patients, the occurrence of multidrug-resistant infection is a significant concern, given its ability to acquire multidrug-resistant, form biofilms and secrete toxic effectors. In Brazil, limited data are available regarding the prevalence of dissemination, and the impact of the type III secretion system (T3SS) on toxin production and biofilm formation in clinical isolates of . This study investigates the dissemination of virulent harbouring the and genes, the presence of T3SS genes and their biofilm-forming capability.
View Article and Find Full Text PDFPf bacteriophages, lysogenic viruses that infect are implicated in the pathogenesis of chronic infections; phage-infected (Pf+) strains are known to predominate in people with cystic fibrosis (pwCF) who are older and have more severe disease. However, the transmission patterns of Pf underlying the progressive dominance of Pf+ strains are unclear. In particular, it is unknown whether phage transmission commonly occurs horizontally between bacteria within the airway via viral particles or if Pf+ bacteria are mostly acquired via new infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!