Synthesis and Characterization of 8-O-Carboxymethylpyranine (CM-Pyranine) as a Bright, Violet-Emitting, Fluid-Phase Fluorescent Marker in Cell Biology.

PLoS One

Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, 111 South Penn Street, Baltimore, Maryland 21201, United States of America.

Published: May 2016

To avoid spectral interference with common fluorophores in multicolor fluorescence microscopy, a fluid-phase tracer with excitation and emission in the violet end of the visible spectrum is desirable. CM-pyranine is easily synthesized and purified. Its excitation and emission maxima at 401.5 nm and 428.5 nm, respectively, are well suited for excitation by 405-nm diode lasers now commonly available on laser-scanning microscopes. High fluorescence quantum efficiency (Q = 0.96) and strong light absorption (ε405 > 25,000 M-1cm-1) together make CM-pyranine the brightest violet aqueous tracer. The fluorescence spectrum of CM-pyranine is invariant above pH 4, which makes it a good fluid-phase marker in all cellular compartments. CM-pyranine is very photostable, is retained for long periods by cells, does not self-quench, and has negligible excimer emission. The sum of its properties make CM-pyranine an ideal fluorescent tracer. The use of CM-pyranine as a fluid-phase marker is demonstrated by multicolor confocal microscopy of cells that are also labeled with lipid and nuclear markers that have green and red fluorescence emission, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505926PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133518PLOS

Publication Analysis

Top Keywords

excitation emission
8
fluid-phase marker
8
cm-pyranine
7
synthesis characterization
4
characterization 8-o-carboxymethylpyranine
4
8-o-carboxymethylpyranine cm-pyranine
4
cm-pyranine bright
4
bright violet-emitting
4
fluid-phase
4
violet-emitting fluid-phase
4

Similar Publications

The hydrothermal synthesis is presented of copper-doped carbon dots (Cu-CDs) from citric acid, urea, and copper chloride, resulting in blue-fluorescent particles with stable emission at 438 nm when excited at 340 nm. Through comprehensive spectroscopic and microscopic characterization (FTIR, XPS, UV, and HRTEM), the Cu-CDs demonstrated remarkable stability across varying pH levels, ionic strengths, temperatures, and UV exposure. Notably, Cu-CDs exhibit ultra-sensitive and selective detection of hexavalent chromium [Cr(VI)] ions in aqueous environments driven by fluorescence quenching.

View Article and Find Full Text PDF

Green Synthesis of Red Fluorescent Carbon Quantum Dots: Antioxidant, Hemolytic, Biocompatibility, and Photocatalytic Applications.

J Fluoresc

January 2025

Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, Maharashtra, India.

A straightforward one-step hydrothermal method is introduced for synthesizing highly efficient red fluorescence carbon dots (R-CQDs), utilizing Heena leaf (Lawsonia inermis) powder as the carbon precursor. The resulting R-CQDs exhibit excitation at 540 nm and emission at 675 nm, a high absolute photoluminescence (PL) with quantum yield of 40% in ethanol. Various physicochemical characterization was employed to confirm successful formation of R-CQDs including UV-Vis Spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray diffraction Spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy.

View Article and Find Full Text PDF

The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.

View Article and Find Full Text PDF

Red-Shifted and Enhanced Photoluminescence Emissions from Hydrogen-Bonded Multicomponent Nontraditional Luminogens.

Langmuir

January 2025

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Nontraditional luminogens (NTLs) without large π-conjugated aromatic structures have attracted a great deal of attention in recent years. Developing NTLs with red-shifted and enhanced emissions remains a great challenge. In this work, we developed a NTL composed of three components, i.

View Article and Find Full Text PDF

The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!