Amelotin Gene Structure and Expression during Enamel Formation in the Opossum Monodelphis domestica.

PLoS One

Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR7138, 75005 Paris, France; CNRS, IBPS, UMR7138, 75005 Paris, France.

Published: May 2016

Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein family, which also includes the enamel matrix proteins amelogenin, ameloblastin and enamelin. Although AMTN is supposed to play an important role in enamel formation, data were long limited to the rodents, in which it is expressed during the maturation stage. Recent comparative studies in sauropsids and amphibians revealed that (i) AMTN was expressed earlier, i.e. as soon as ameloblasts are depositing the enamel matrix, and (ii) AMTN structure was different, a change which mostly resulted from an intraexonic splicing in the large exon 8 of an ancestral mammal. The present study was performed to know whether the differences in AMTN structure and expression in rodents compared to non-mammalian tetrapods dated back to an early ancestral mammal or were acquired later in mammalian evolution. We sequenced, assembled and screened the jaw transcriptome of a neonate opossum Monodelphis domestica, a marsupial. We found two AMTN transcripts. Variant 1, representing 70.8% of AMTN transcripts, displayed the structure known in rodents, whereas variant 2 (29.2%) exhibited the nonmammalian tetrapod structure. Then, we studied AMTN expression during amelogenesis in a neonate specimen. We obtained similar data as those reported in rodents. These findings indicate that more than 180 million years ago, before the divergence of marsupials and placentals, changes occurred in AMTN function and structure. The spatiotemporal expression was delayed to the maturation stage of amelogenesis and the intraexonic splicing gave rise to isoform 1, encoded by variant 1 and lacking the RGD motif. The ancestral isoform 2, housing the RGD, was initially conserved, as demonstrated here in a marsupial, then secondarily lost in the placental lineages. These findings bring new elements towards our understanding of the non-prismatic to prismatic enamel transition that occurred at the onset of mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506066PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133314PLOS

Publication Analysis

Top Keywords

amtn
9
structure expression
8
enamel formation
8
opossum monodelphis
8
monodelphis domestica
8
enamel matrix
8
maturation stage
8
amtn structure
8
intraexonic splicing
8
ancestral mammal
8

Similar Publications

Amino-Terephthalonitrile and Amino-Terephthalate-Based Single Benzene Fluorophores - Compact Color Tunable Molecular Dyes for Bioimaging and Bioanalysis.

Chem Asian J

December 2024

Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Goa, 403726, India.

This review article discusses the emerging amino-terephthalonitrile (Am-TN) and amino terephthalate-based single benzene fluorophores (SBFs) for their highly emissive nature and potential for numerous technical applications. Am-TN-SBFs are a new class of SBFs having amine as the electron donating (EDG) and dinitrile as the electron withdrawing group (EWG). The beauty of these Am-TN-SBFs lies in excellent intramolecular charge transfer between the EDG and EWG.

View Article and Find Full Text PDF

Background: This study aimed to evaluate dentin wear and biological performance of desensitizing materials.

Methods: Seventy bovine root dentin blocks were sectioned. Half of the surface of each specimen was untreated (control) and the other half was immersed in EDTA and treated with the following desensitizing materials: placebo varnish (PLA), fluoride varnish (FLU), sodium fluoride (NaF) varnish + sodium trimetaphosphate (TMP), universal adhesive (SBU), S-PRG varnish (SPRG), biosilicate (BIOS), and amelotin solution (AMTN).

View Article and Find Full Text PDF

Different species of toothed whales (Odontoceti) exhibit a variety of tooth forms and enamel types. Some odontocetes have highly prismatic enamel with Hunter-Schreger bands, whereas enamel is vestigial or entirely lacking in other species. Different tooth forms and enamel types are associated with alternate feeding strategies that range from biting and grasping prey with teeth in most oceanic and river dolphins to the suction feeding of softer prey items without the use of teeth in many beaked whales.

View Article and Find Full Text PDF

The rough-toothed dolphin genome provides new insights into the genetic mechanism of its rough teeth.

Integr Zool

July 2023

CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

The rough-toothed dolphin (Steno bredanensis) is characterized by having teeth covered in finely wrinkled vertical ridges, which is a general manifestation of amelogenesis imperfecta. The rough surfaces are hypothesized to be an evolutionary morphological trait of feeding adaptation to increase the dolphin's grip on prey. Here, we assembled a rough-toothed dolphin genome and performed the comparative genomic analysis to reveal the genetic basis of the special enamel.

View Article and Find Full Text PDF

Human neutrophil elastase (HNE) and proteinase 3 (Pr3) released from neutrophils at inflammatory sites are the major causes of pathogens in chronic obstructive pulmonary disease (COPD) and various lung tissue derangements, among which cystic fibrosis and blockade of airway passages are chronic. These proteolytic mediatory agents combined with induced oxidative reactions sustain pathogenicity. Cyclic diketone indane-1,3-dione derivatives were designed, and toxicity evaluation predictions were performed .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!