Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation.

PLoS One

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Forestry Science and Engineering, College of Forestry, Guangxi University, Nanning, Guangxi, China.

Published: May 2016

Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR) and a second rotation (SR) stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC) did not significantly differ between rotations, while understory vegetation (UC) and soil organic matter (SOC) stored less carbon in the SR (1.01 vs. 2.76 Mg.ha(-1) and 70.68 vs. 81.08 Mg. ha(-1), respectively) and forest floor carbon (FFC) conversely stored more (2.80 vs. 2.34 Mg. ha(-1)). The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool) of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505904PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132858PLOS

Publication Analysis

Top Keywords

eucalyptus plantations
20
carbon stock
16
carbon
13
successive rotations
12
plantations
9
successive rotation
8
rotation regimes
8
full rotation
8
carbon sequestration
8
short-rotation plantations
8

Similar Publications

The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).

View Article and Find Full Text PDF

Invasive alien species often undergo shifts in their ecological niches when they establish themselves in environments that differ from their native habitats. Fisher LaSalle (Hymenoptera: Eulophidae), specifically, has caused huge economic losses to trees in Australia. The global spread of cultivation has allowed to threaten plantations beyond its native habitat.

View Article and Find Full Text PDF

Potential of Bacillus thuringiensis isolates to manage Gonipterus platensis (Coleoptera: Curculionidae) larvae populations.

Environ Entomol

December 2024

Departamento de Proteção Vegetal, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, São Paulo, Brasil.

The growing expansion of eucalyptus plantations in Brazil and the impact of exotic pests, such as Gonipterus platensis, demand effective, and sustainable biological control strategies. The aim of this study was to assess the pathogenicity of 10 Bacillus thuringiensis (Bt) isolates to neonate Gonipterus platensis larvae, commonly known as the eucalyptus weevil (Coleoptera: Curculionidae) with the specific focus of evaluating their potential to manage this pest while preserving its egg parasitoid, Anaphes nitens. To achieve this, the genomic DNA of the 10 Bt isolates was extracted using the thermal lysis method for molecular characterization of their Cry and Vip proteins.

View Article and Find Full Text PDF

Land use conversion from natural forests to grassland, plantation forests, mono-cropping coffee and croplands is a significant causes of soil degradation, leading to aggravate soil acidity and nutrient depletion. However, there is limited information regarding comprehensive effect of land use conversion on soil fertility and acidity in western Oromia Region of Ethiopia. Hence, this study aims to assess the surface soil fertility and acidity across different land use types (forest, crop, eucalyptus land, grazing land, and coffee farmland) to provide management options.

View Article and Find Full Text PDF

Eucalyptus (Eucalyptus spp., Mirtaceae) stands out for its remarkable regeneration capacity, making it a valuable tool for recovering degraded areas and for reforestation. Despite its Australian origins, eucalyptus has shown remarkable adaptation to the Brazilian tropical climate, contributing to the wood productivity of the country.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!