Imaging-Guided Drug Release from Glutathione-Responsive Supramolecular Porphysome Nanovesicles.

ACS Appl Mater Interfaces

†Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.

Published: August 2015

Drug delivery systems that can be employed to load anticancer drugs and release them triggered by a specific stimulus, such as glutathione, are of great importance in cancer therapy. In this study, supramolecular porphysome nanovesicles that were self-assembled by amphiphilic porphyrin derivatives were successfully constructed, mainly driven by the π-π stacking, hydrogen bonding, and hydrophobic interactions, and were used as carriers of anticancer drugs. The nanovesicles are monodispersed in shape and uniform in size. The drug loading and in vitro drug release investigations indicate that these nanovesicles are able to encapsulate doxorubicin (DOX) to achieve DOX-loaded nanovesicles, and the nanovesicles could particularly release the loaded drug triggered by a high concentration of glutathione (GSH). More importantly, the drug release in cancer cells could be monitored by fluorescent recovery of the porphyrin derivative. Cytotoxicity experiments show that the DOX-loaded nanovesicles possess comparable therapeutic effect to cancer cells as free DOX. This study presents a new strategy in the fabrication of versatile anticancer drug nanocarriers with stimuli-responsive properties. Thus, the porphysome nanovesicles demonstrated here might offer an opportunity to bridge the gap between intelligent drug delivery systems and imaging-guided drug release.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b06026DOI Listing

Publication Analysis

Top Keywords

drug release
16
porphysome nanovesicles
12
imaging-guided drug
8
supramolecular porphysome
8
nanovesicles
8
drug
8
drug delivery
8
delivery systems
8
anticancer drugs
8
dox-loaded nanovesicles
8

Similar Publications

Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.

View Article and Find Full Text PDF

Cervical cancer remains a significant health challenge in developing countries are high due to low HPV vaccination rates, delayed diagnosis, and restricted healthcare access. Metal nanomaterials, such as copper oxide (CuO) nanoparticles (NPs), have shown significant promise in cancer therapy due to their ability to induce apoptosis. 5-Fluorouracil (5-Fu) enhances the cytotoxic effect against cervical cancer, working synergistically with CuO NPs to maximize the therapeutic impact while potentially reducing the 5-Fu's systemic side effects.

View Article and Find Full Text PDF

Alcohol consumption is known to affect dopamine (DA) release in the brain, with significant implications for understanding addiction and its neurobiological underpinnings. This meta-analysis examined the effects of acute alcohol administration on striatal DA release in healthy humans as measured with [C]-raclopride positron emission tomography (PET). Oral alcohol administration was associated with a significant reduction in [C]-raclopride binding potential (BP) in the ventral striatum (Cohen's d = -0.

View Article and Find Full Text PDF

King cobra () venom comprises a diverse array of proteins and peptides. However, the roles and properties of these individual components are still not fully understood. Among these, Cysteine-rich secretory proteins (CRiSPs) are recognized but not fully characterized.

View Article and Find Full Text PDF

The increasing use of products for medicinal, dietary, and recreational purposes has raised concerns about mycotoxin contamination in cannabis and hemp. Mycotoxins persist in these products' post-processing, posing health risks via multiple exposure routes. This study investigated cytotoxic and genotoxic interactions between cannabidiol (CBD) and the mycotoxin citrinin (CIT) using human cell models: SH-SY5Y, HepG2, HEK293, and peripheral blood lymphocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!