Electrode design in nanoscale is expected to contribute significantly in constructing an enhanced electrochemical platform for a superb sensor. In this work, we present a facile synthesis of new fashioned heteronanostructure that is composed of one-dimensional Cu nanowires (NWs) and epitaxially grown two-dimensional Cu2O nanosheets (NSs). This hierarchical architecture is quite attractive in molecules detection for three unique characteristics: (1) the three-dimensional hierarchical architecture provides large specific surface areas for more active catalytic sites and easy accessibility for the target molecules; (2) the high-quality heterojunction with minimal lattice mismatch between the built-in current collector (Cu core) and active medium (Cu2O shell) considerably promotes the electron transport; (3) the adequate free space between branches and anisotropic NWs can accommodate a large volume change to avoid collapse or distortion during the reduplicative operation processes under applied potentials. The above three proposed advantages have been addressed in the fabricated Cu@Cu2O NS-NW-based superb glucose sensors, where a successful integration of ultrahigh sensitivity (1420 μA mM(-1) cm(-2)), low limit of detection (40 nM), and fast response (within 0.1 s) has been realized. Furthermore, the durability and reproducibility of such devices made by branched core-shell nanowires were investigated to prove viability of the proposed structures. This achievement in current work demonstrates an innovative strategy for nanoscale electrode design and application in molecular detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b04614 | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
Anal Methods
November 2017
Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.
View Article and Find Full Text PDFNat Commun
January 2025
WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
Reducing green hydrogen production cost is critical for its widespread application. Proton-exchange-membrane water electrolyzers are among the most promising technologies, and significant research has been focused on developing more active, durable, and cost-effective catalysts to replace expensive iridium in the anode. Ruthenium oxide is a leading alternative while its stability is inadequate.
View Article and Find Full Text PDFACS Nano
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Carbon dioxide capture underpins an important range of technologies that can help to mitigate climate change. Improved carbon capture technologies that are driven by electrochemistry are under active development, and it was recently found that supercapacitor energy storage devices can reversibly capture and release carbon dioxide. So-called supercapacitive swing adsorption (SSA) has several advantages over traditional carbon dioxide capture technologies such as lower energy consumption and the use of nontoxic materials.
View Article and Find Full Text PDFBioresour Technol
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China. Electronic address:
Direct interspecies electron transfer (DIET) enhances anaerobic digestion by facilitating electron exchange between electroactive bacteria and methanogenic archaea. While Geobacter species are recognized for donating electrons to methanogens via DIET, they are rarely detected in mixed microbial communities. This study examined various non-electrode biological carriers (zeolite, carbon cloth, activated carbon and biochar) to promote Geobacter cultivation under anaerobic conditions and identify pivotal factors influencing their symbiosis with methanogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!