Blood group antigen studies using CdTe quantum dots and flow cytometry.

Int J Nanomedicine

Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.

Published: April 2016

New methods of analysis involving semiconductor nanocrystals (quantum dots [QDs]) as fluorescent probes have been highlighted in life science. QDs present some advantages when compared to organic dyes, such as size-tunable emission spectra, broad absorption bands, and principally exceptional resistance to photobleaching. Methods applying QDs can be simple, not laborious, and can present high sensibility, allowing biomolecule identification and quantification with high specificity. In this context, the aim of this work was to apply dual-color CdTe QDs to quantify red blood cell (RBC) antigen expression on cell surface by flow cytometric analysis. QDs were conjugated to anti-A or anti-B monoclonal antibodies, as well as to the anti-H (Ulex europaeus I) lectin, to investigate RBCs of A1, B, A1B, O, A2, and Aweak donors. Bioconjugates were capable of distinguishing the different expressions of RBC antigens, both by labeling efficiency and by flow cytometry histogram profile. Furthermore, results showed that RBCs from Aweak donors present fewer amounts of A antigens and higher amounts of H, when compared to A1 RBCs. In the A group, the amount of A antigens decreased as A1 > A3 > AX = Ael, while H antigens were AX = Ael > A1. Bioconjugates presented stability and remained active for at least 6 months. In conclusion, this methodology with high sensibility and specificity can be applied to study a variety of RBC antigens, and, as a quantitative tool, can help in achieving a better comprehension of the antigen expression patterns on RBC membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501227PMC
http://dx.doi.org/10.2147/IJN.S84551DOI Listing

Publication Analysis

Top Keywords

quantum dots
8
flow cytometry
8
high sensibility
8
antigen expression
8
aweak donors
8
rbc antigens
8
antigens
5
blood group
4
group antigen
4
antigen studies
4

Similar Publications

Precise control of assembled structures of quantum dots (QDs) is crucial for realizing the desired photophysical properties, but this remains challenging. Especially, the one-dimensional (1D) control is rare due to the nearly isotropic nature of QDs. Herein, we propose a novel strategy for controlling the 1D-arrangement range of cubic perovskite QDs in solution based on the morphological modification of a supramolecular polymer (SP) template.

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

Carbon dots (CDs) as a new class of photoluminescent zero-dimension carbon nanoparticles have attracted significant research interests owing to their extraordinary opto-electro-properties and biocompatibility. So far, almost all syntheses of CDs require either heat treatment or exertion of high energy fields. Herein, a scalable room-temperature vortex fluidic method is introduced to the CDs synthesis using the angled vortex fluidic device (VFD).

View Article and Find Full Text PDF

This study introduces an innovative approach to high-resolution latent fingerprint detection using carbon quantum dots (CQDs) biosynthesized from spent coffee grounds, enhanced with nitrogen doping. Conventional fingerprinting methods frequently use hazardous chemicals and are costly, highlighting the need for eco-friendly, affordable alternatives that preserve detection quality. The biosynthesized nitrogen-doped CQDs exhibit strong photoluminescence and high stability, offering a sustainable, effective alternative for fingerprint imaging.

View Article and Find Full Text PDF

Leveraging an Innovative Green Copper and Nitrogen-Doped Carbon Quantum Dots for Quantification of Malathion in Various Matrices.

J Fluoresc

January 2025

Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut branch, Assiut, 71524, Egypt.

Article Synopsis
  • Carbon quantum dots (CQDs) are gaining attention as cost-effective and eco-friendly fluorescence probes, offering advantages over traditional luminescent techniques.
  • A new type of copper and nitrogen-doped CQDs (Cu-N@CQDs) was created, achieving a high quantum yield of 40.20% for detecting malathion, an insecticide.
  • The study demonstrated that the fluorescence intensity of Cu-N@CQDs decreased in response to malathion, allowing for accurate measurements across various samples like water and food, achieving high recovery rates.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!