Air pollution is one of the leading global public health risks but its magnitude in many developing countries' cities is not known. We aimed to measure the concentration of particulate matter with aerodynamic diameter <2.5 µm (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) pollutants in two Ugandan cities (Kampala and Jinja). PM2.5, O3, temperature and humidity were measured with real-time monitors, while NO2 and SO2 were measured with diffusion tubes. We found that the mean concentrations of the air pollutants PM2.5, NO2, SO2 and O3 were 132.1 μg/m3, 24.9 µg/m3, 3.7 µg/m3 and 11.4 μg/m3, respectively. The mean PM2.5 concentration is 5.3 times the World Health Organization (WHO) cut-off limits while the NO2, SO2 and O3 concentrations are below WHO cut-off limits. PM2.5 levels were higher in Kampala than in Jinja (138.6 μg/m3 vs. 99.3 μg/m3) and at industrial than residential sites (152.6 μg/m3 vs. 120.5 μg/m3) but residential sites with unpaved roads also had high PM2.5 concentrations (152.6 μg/m3). In conclusion, air pollutant concentrations in Kampala and Jinja in Uganda are dangerously high. Long-term studies are needed to characterize air pollution levels during all seasons, to assess related public health impacts, and explore mitigation approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515709PMC
http://dx.doi.org/10.3390/ijerph120708075DOI Listing

Publication Analysis

Top Keywords

state ambient
4
ambient air
4
air quality
4
quality ugandan
4
ugandan cities
4
cities pilot
4
pilot cross-sectional
4
cross-sectional spatial
4
spatial assessment
4
assessment air
4

Similar Publications

Single GAF domain phytochrome exhibits a pH-dependent shunt on the millisecond timescale.

Chemphyschem

January 2025

Goethe-Universität Frankfurt am Main, Physical and Theoretical Chemistry, Max von Laue-Straße 7, 60438, Frankfurt am Main, GERMANY.

The light-sensing activity of phytochromes is based on the reversible light-induced switching between two isomerization states of the bilin chromophore. These photo-transformations may not necessarily be only unidirectional, but could potentially branch back to the initial ground state in a thermally driven process termed shunt. Such shunts have been rarely reported, and thus our understanding of this process and its governing factors are limited.

View Article and Find Full Text PDF

Ubiquitous white light-emitting diodes (LEDs) possess optical properties that differ from those of natural light. This difference can impact visual perception and biological functions, thus potentially affecting eye health. Myopia, which leads to visual impairments and potentially irreversible vision loss or blindness, is the most prevalent refractive error worldwide.

View Article and Find Full Text PDF

Introduction: Pulmonary airway dystrophy (PAD) is a rare disease that may be either innate or acquired. Very few publications have been dedicated to the repercussions of the air pressure variations that may be encountered during an airplane journey in a pressurized cabin, an aerial tramway ascent or a stay in a high-altitude setting. Variations may also occur during deep-sea diving with modification of absolute air pressure.

View Article and Find Full Text PDF

Metastable phases can exist within local minima in the potential energy landscape when they are kinetically "trapped" by various processing routes, such as thermal treatment, grain size reduction, chemical doping, interfacial stress, or irradiation. Despite the importance of metastable materials for many technological applications, little is known about the underlying structural mechanisms of the stabilization process and atomic-scale nature of the resulting defective metastable phase. Investigating ion-irradiated and nanocrystalline zirconia with neutron total scattering experiments, we show that metastable tetragonal ZrO consists of an underlying structure of ferroelastic, orthorhombic nanoscale domains stabilized by a network of domain walls.

View Article and Find Full Text PDF

The optimization of nonradiative recombination losses through interface engineering is key to the development of efficient, stable, and hysteresis-free perovskite solar cells (PSCs). In this study, for the first time in solar cell technology, we present a novel approach to interface modification by employing one-dimensional lepidocrocite (henceforth referred to as 1DL) TiO-based nanofilaments, NFs, between the mesoporous TiO (mp TiO) and halide perovskite film in PSCs to improve both the efficiency and stability of the devices. The 1DLs can be easily produced on the kilogram scale starting with cheap and earth-abundant precursor powders, such as TiC, TiN, TiB, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!