Objective: Lewy body dementias (LBD) include both dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD), and the differentiation of LBD from other neurodegenerative dementias can be difficult. Currently, there are few biomarkers which might assist early diagnosis, map onto LBD symptom severity, and provide metrics of treatment response. Traditionally, biomarkers in LBD have focussed on neuroimaging modalities; however, as biomarkers need to be simple, inexpensive and non-invasive, neurophysiological approaches might also be useful as LBD biomarkers.
Methods: In this review, we searched PubMED and PsycINFO databases in a semi-systematic manner in order to identify potential neurophysiological biomarkers in the LBDs.
Results: We identified 1491 studies; of these, 37 studies specifically examined neurophysiological biomarkers in LBD patients. We found that there was substantial heterogeneity with respect to methodologies and patient cohorts.
Conclusion: Generally, many of the findings have yet to be replicated, although preliminary findings reinforce the potential utility of approaches such as quantitative electroencephalography and motor cortical stimulation paradigms.
Significance: Various neurophysiological techniques have the potential to be useful biomarkers in the LBDs. We recommend that future studies focus on maximising the diagnostic specificity and sensitivity of the most promising neurophysiological biomarkers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727506 | PMC |
http://dx.doi.org/10.1016/j.clinph.2015.06.020 | DOI Listing |
Brain Commun
January 2025
Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA.
The subthalamic nucleus is thought to play a crucial role in controlling impulsive actions. Networked among the basal ganglia and receiving input from several cortical areas, the subthalamic nucleus is well positioned to influence action selection when faced with competing and conflicting action outcomes. The purpose of this study was to test the dissociable roles of the dorsal and ventral aspects of the subthalamic nucleus during action conflict in patients with Parkinson's disease undergoing intraoperative neurophysiological recording and to explore a potential mechanism for this inhibitory control.
View Article and Find Full Text PDFAm J Psychiatry
January 2025
Centre Hospitalier de l'Université de Montréal (CHUM) and Centre de Recherche du CHUM (CRCHUM), University of Montreal, Montreal (Couture, Desbeaumes Jodoin, Bousseau, Sarshoghi, Miron, Lespérance); IfADo Leibniz Research Center for Working Environment and Human Factors at TU Dortmund, Germany, and Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, and German Center for Mental Health (Nitsche); Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto (Blumberger); Department of Medicine (Bolduc) and Department of Psychiatry and Addictology (Lespérance, Miron), Faculty of Medicine, University of Montreal, Montreal; Interventional Psychiatry Program, Department of Psychiatry, UC San Diego School of Medicine, San Diego (Weissman, Appelbaum, Daskalakis, Poorganji, Miron).
Objective: This study investigated spaced transcranial direct current stimulation for major depressive disorder, focusing on feasibility.
Methods: In a prospective open-label study, 30 participants with major depressive disorder were enrolled to receive a 50-session transcranial direct current stimulation (tDCS) treatment over 2 weeks. The feasibility, safety, tolerability, and preliminary therapeutic effects of this tDCS protocol were assessed using the 17-item Hamilton Depression Rating Scale (HAM-D-17) and the Montgomery-Åsberg Depression Rating Scale (MADRS) at baseline and 1-week and 4-week follow-ups, as well as with the 6-item HAM-D (HAM-D-6) daily during treatment.
Front Psychiatry
January 2025
Feneryolu Medical Center, Üsküdar University, Istanbul, Türkiye.
Introduction: Major Depressive Disorder (MDD) leads to dysfunction and impairment in neurological structures and cognitive functions. Despite extensive research, the pathophysiological mechanisms and effects of MDD on the brain remain unclear. This study aims to assess the impact of MDD on brain activity using EEG power spectral analysis and asymmetry metrics.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.
The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.
View Article and Find Full Text PDFPLoS One
January 2025
Female Brain & Endocrine Health Research (FemBER) Consortium.
Background: Recent studies have demonstrated a greater risk of dementia in female veterans compared to civilians; with the highest prevalence noted for former service women with a diagnosis of psychiatric (trauma, alcoholism, depression), and/or a physical health condition (brain injury, insomnia, diabetes). Such findings highlight the need for increased and early screening of medical and psychiatric conditions, and indeed dementia, in the female veteran population. Further, they call for a better understanding of the underlying biopsychosocial mechanisms that might confer heightened risk for female veterans, to tailor preventative and interventional strategies that support brain health across the lifespan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!