A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomechanical effect of posterolateral corner sectioning after ACL injury and reconstruction. | LitMetric

Biomechanical effect of posterolateral corner sectioning after ACL injury and reconstruction.

Knee Surg Sports Traumatol Arthrosc

Clinica Ortopedica e Traumatologica II, Laboratorio di Biomeccanica ed Innovazione Tecnologica, Istituto Ortopedico Rizzoli, via di Barbiano, 1/10, 40136, Bologna, Italy.

Published: October 2015

Purpose: Posterolateral corner structures functionally interact with the ACL. The aim of this study was to investigate the capability of an isolated ACL reconstruction control laxity parameters in a knee with combined ACL and PLC and the increase in terms of laxity produced by the resection of the PC in an ACL-deficient knee.

Method: An in vitro cadaveric study was performed on seven knees. The joints were analysed in the following conditions: intact, after ACL resection, after popliteus complex resection, after ACL reconstruction and after LCL. Testing laxity parameters were recorded with an intra-operative navigation system and defined as: AP displacement at 30° and 90° of flexion (AP30 and AP90) applying a 130 N load and IE at 30° and 90° of knee flexion with a 5 N load.

Results: Sectioning the ACL significantly increased the AP30 at 30° and 90° of knee flexion (p < 0.05). At 90° of knee flexion, the resection of the LCL determined a significant increase in terms of AP laxity (p < 0.05). At 90° has been found a significant difference for the IE laxity (p < 0.05) after PC resection. Sectioning the LCL produced a significant increase in IE laxity at 30° and 90° of knee flexion (p < 0.05).

Conclusion: Isolated ACL reconstruction is able to control the AP laxity with a combined complete lesion of the PLC at 30° of knee flexion, but not at higher angle of knee flexion. Considering the IE rotations, the reconstruction was not sufficient not even to control a partial lesion of the PLC. These findings suggest that additional surgical procedures should be considerate even when facing combined PLC lesion.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00167-015-3696-3DOI Listing

Publication Analysis

Top Keywords

30° 90°
12
posterolateral corner
8
sectioning acl
8
acl reconstruction
8
laxity parameters
8
90° knee
8
knee flexion
8
acl
7
biomechanical posterolateral
4
corner sectioning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!