Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell.

Environ Technol

b CIRSEE , Suez-Environnement , 38 rue du Président Wilson, F-78230 Le Pecq , France.

Published: August 2016

Biogas contains trace compounds detrimental for solid oxide fuel cell (SOFC) application, especially sulphur-containing compounds and volatile organic silicon compounds (VOSiCs). It is therefore necessary to remove these impurities from the biogas for fuelling an SOFC. In this paper, dynamic lab-scale adsorption tests were performed on synthetic polluted gas to evaluate the performance of a polishing treatment to remove hydrogen sulphide (H2S - sulphur compound) and octamethylcyclotetrasiloxane (D4 - VOSiC). Three kinds of adsorbents were tested: an activated carbon, a silica gel (SG) and a zeolite (Z). Z proved to be the best adsorbent for H2S removal, with an adsorbed quantity higher than [Formula: see text] at the SOFC tolerance limit. However, as concerns D4 removal, SG was the most efficient adsorbent, with an adsorbed quantity of about 184 mgD4/gSG at the SOFC tolerance limit. These results could not be explained by structural characteristics of the adsorbents, but they were partly explained by chemical interactions between the adsorbate and the adsorbent. In these experiments, internal diffusion was the controlling step, Knudsen diffusion being predominant to molecular diffusion. As Z was also a good adsorbent for D4 removal, competition phenomena were investigated with Z for the simultaneous removal of H2S and D4. It was shown that H2S retention was dramatically decreased in the presence of D4, probably due to D4 polymerization resulting in pore blocking.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2015.1063707DOI Listing

Publication Analysis

Top Keywords

h2s removal
8
solid oxide
8
oxide fuel
8
fuel cell
8
adsorbed quantity
8
sofc tolerance
8
tolerance limit
8
h2s
5
removal
5
comparison adsorbents
4

Similar Publications

Tannin additions decrease the concentration of malodorous volatile sulfur compounds in wine-like model solutions and wine.

Food Chem

January 2025

Departamento de Horticultura, Facultad de Ciencias Agrarias, Universidad de Talca, 2 Norte 685, Talca, Chile.

Hydrogen sulfide (HS), methanethiol (MeSH) and ethanethiol (EtSH) are volatile sulfur compounds (VSCs) produced during winemaking and are associated with negative 'reductive' aromas in wine. Anecdotal evidence suggests that oenological tannins may be used to remediate the 'reductive' character of wines, yet little scientific evidence or explanation supporting this observation has been published. In this study, it was found that the addition of oenological tannins significantly decreased HS, MeSH, and EtSH in model wine by up to 92 %, 90 % and 86 %, respectively, after two weeks of storage.

View Article and Find Full Text PDF

Microalgae-based membrane bioreactor for wastewater treatment, biogas production, and sustainable energy: A review.

Environ Res

January 2025

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery Between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia.

Managing wastewater and using renewable energy sources are challenges in achieving sustainable development goals. This study provides an overview of the factors influencing the performance of algae-based membrane bioreactors (AMBRs) for contaminant removal from wastewater and biogas production. This review highlights that the performance of AMBRs in removing total phosphorus (TP) and nitrogen (N) from wastewater can reach up to 93% and 97%, respectively, depending on parameters such as pH, hydraulic retention time (HRT), and algae concentration.

View Article and Find Full Text PDF

Preparation of nitrogen-doped biocarbon from sewage sludge and pine sawdust for superior hydrogen sulfide removal: Experimental and DFT studies.

Environ Res

January 2025

Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China. Electronic address:

Hydrogen sulfide (HS) is a major air pollutant posing a serious threat to both the environment and public health. In this study, a novel nitrogen-rich biocarbon that effectively removes HS was produced from a mixture of sewage sludge and pine sawdust using melamine as nitrogen source. Compared with pristine biocarbons, nitrogen (N)-doped biocarbons possessed an adjustable porosity, e.

View Article and Find Full Text PDF

In the current years, gas-liquid membrane contactors (GLMCs) have been introduced as a promising, versatile and easy-to-operate technology for mitigating the emission of major greenhouse contaminants (i.e., CO and HS) to the ecosystem.

View Article and Find Full Text PDF

The relationship among HS, neuroinflammation and MMP-9 in BBB injury following ischemic stroke.

Int Immunopharmacol

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China. Electronic address:

Article Synopsis
  • The blood-brain barrier (BBB) plays a crucial role in maintaining the central nervous system's environment and can be damaged by CNS diseases such as ischemic stroke, leading to worse outcomes.
  • Excessive neuroinflammation after a stroke, triggered by the need to repair damaged tissue, contributes to BBB breakdown and neuronal injury, partly due to the action of matrix metalloproteinases (MMPs).
  • Hydrogen sulfide (HS) shows promise as a neuroprotective agent against BBB damage following stroke by reducing neuroinflammation and inhibiting MMP-9, revealing potential therapeutic pathways.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!