The objective of this study was to fabricate and characterize electrospun fibers loaded with budesonide with the aim of controlling its release in the gastrointestinal tract. Budesonide is a nonhalogenated glucocorticosteroid drug, highly effective in the treatment of some inflammatory bowel diseases with local action throughout ileum and colon. At this aim, Eudragit® S 100, a polymer soluble at pH > 7, commonly used for enteric release of drugs, has been successfully spun into ultrafine fibers loaded with Budesonide (B) at 9% and 20% (w/w) using the electrospinning process. The physico-chemical characterization by scanning electron microscopy, X-ray diffraction, FTIR spectroscopy, and thermal analyses indicated the amorphous nature of budesonide in the electrospun systems. Dissolution rate measurements using a pH-change method showed negligible drug dissolved at pH 1.0 and sustained release at pH 7.2. Therefore, the pharmaceutical systems proposed, made of fibers, represent an effective method for drug targeting to terminal ileum and colon with the aim of improving the local efficacy of this drug.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.24587DOI Listing

Publication Analysis

Top Keywords

electrospun fibers
8
drug targeting
8
fibers loaded
8
loaded budesonide
8
ileum colon
8
colon aim
8
drug
5
fabrication physico-chemical
4
physico-chemical pharmaceutical
4
pharmaceutical characterization
4

Similar Publications

Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release.

Discov Nano

January 2025

National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.

Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).

View Article and Find Full Text PDF

Antimicrobial resistance poses a growing threat to public health globally. Multidrug resistant Pseudomonas (P.) aeruginosa is detected in many infected wounds and is very challenging to treat with antibiotics.

View Article and Find Full Text PDF

Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.

View Article and Find Full Text PDF

Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair.

Regen Biomater

December 2024

Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany.

Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors.

View Article and Find Full Text PDF

Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!