Autophagy, referring to an evolutionarily conserved, multi-step lysosomal degradation process, has been well-known to be initiated by Unc-51 like kinase 1 (ULK1) with some links to Parkinson's disease (PD). MicroRNAs (miRNAs), small and non-coding endogenous RNAs 22 ~ 24 nucleotides (nt) in length, have been demonstrated to play an essential role for modulating autophagy. Recently, the relationships between miRNAs and autophagy have been widely reported in PD; however, how microRNAs regulate autophagy still remains in its infancy. Thus, in this study, we computationally constructed the ULK1-regulated autophagic kinase subnetwork in PD and further identified ULK1 able to negatively regulate p70(S6K) in starvation-induced autophagy of neuroblastoma SH-SY5Y cells. Combination of in silico prediction and microarray analyses, we identified that miR-4487 and miR-595 could target ULK1 and experimentally verified they could negatively or positively regulate ULK1-mediated autophagy. In conclusion, these results may uncover the novel ULK1-p70(S6K) autophagic pathway, as well as miR-4487 and miR-595 as new ULK1 target miRNAs. Thus, these findings would provide a clue to explore ULK1 and its target miRNAs as potential biomarkers in the future PD therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505320 | PMC |
http://dx.doi.org/10.1038/srep11035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!