Background And Aim Of The Study: Calcific aortic valve disease (CAVD) is the most common valvular disorder. While fluid stresses are presumed to play a role in disease progression, the valvular hemodynamic changes experienced over the course of CAVD remain largely unknown. The study aim was to develop a laboratory protocol for the fabrication of tissue valve models mimicking mild and moderate calcific stenosis, for future use in flow studies.

Methods: Different hydroxyapatite (HA)-agarose mixtures were injected into porcine valve leaflets. Micro-computed tomography (micro-CT) was used to quantify HA deposition volume, area fraction and regional distribution, while von Kossa staining was performed to assess tissue mineralization. Particle image velocimetry measurements were carried out in intact and injected valves subjected to in vivo-like hemodynamics to characterize the degree of valvular stenosis in terms of geometric orifice area (GOA) and peak systolic velocity.

Results: The 5% HA-1% agarose solution (solution 1) and the 5% HA-0.5% agarose solution (solution 2) maximized the HA deposition volume. Leaflet injections with solution 1 resulted in a significant 1.9-fold increase in HA area fraction relative to solution 2 injections. While solution 1 injections generated multiple sites of high HA concentration, solution 2 injections produced smaller, discrete spots. Injections of both solution 1 and solution 2 into whole valves generated significant 47% and 32% reductions, respectively, in GOA and 1.8-fold and 1.5-fold increases, respectively, in peak systolic velocity, relative to untreated valves.

Conclusion: Tissue valve models were generated that recapitulated the structure and hemodynamics of mild and moderate valvular calcification. Those models may be used for future investigations of the native valvular hemodynamic alterations that occur during CAVD.

Download full-text PDF

Source

Publication Analysis

Top Keywords

solution solution
12
injections solution
12
solution injections
12
solution
10
valve leaflets
8
valvular hemodynamic
8
tissue valve
8
valve models
8
mild moderate
8
deposition volume
8

Similar Publications

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

Polyoxometalates (POMs) are composed of nanometric metal-oxide anions and have rich solution chemistry. In this class, Keggin POMs have been identified as the most influential inorganic additives for aqueous nonionic soft matter systems. POMs being at the borderline of classical ions and charged colloids possess fascinating solution properties; the present work aims to delve deeper into the interactions between nanoions and nonionic soft matters from a spectroscopic point of view.

View Article and Find Full Text PDF

Bipolar Solid-Solution Hosts for Efficient Crystalline Organic Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

Crystalline organic semiconductors, recognized for their highly ordered structures and high carrier mobility, have emerged as a focal point in the field of high-performance optoelectronic devices. Nevertheless, the intrinsic unipolar properties, characterized by imbalanced hole and electron transport capabilities, have continuously represented a significant challenge in the advancement of high-performance crystalline thin-film organic light-emitting diodes (C-OLEDs). Here, a bipolar solid-solution thin film with a maintained crystal structure has been fabricated using 2-(4-(9H-carbazol-9-yl)phenyl)-1(3,5-difluorophenyl)-1H-phenanthro [9,10-d]imidazole (2FPPICz) and 4-(1-(3,5-difluorophenyl)-1H-imidazo[4,5-][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline (2Fn) via a weak epitaxial growth (WEG) process, exhibiting nearly equivalent hole and electron mobilities (10-10 cm V s).

View Article and Find Full Text PDF

Background: The prevalence of stroke is high in both males and females, and it rises with age. Stroke often leads to sensor and motor issues, such as hemiparesis affecting one side of the body. Poststroke patients require torso stabilization exercises, but maintaining proper posture can be challenging due to their condition.

View Article and Find Full Text PDF

Background: To reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional exposure) have been identified, and some diagnostic tools (eg, by way of cystoscopy) have been proposed. However, to date, no fully satisfactory (noninvasive, inexpensive, high-performance) solution for widespread deployment has been proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!