Infiltration basins have been widely used for stormwater runoff management. However, their longevity could be compromised over time, up to the point of operational failure. This research study showed that a 'failed' infiltration basin can 'transition' into a wetpond/wetland-like practice and provide water quality benefits. Performance evaluation over three years showed that the transitioned infiltration basin reduced the discharge event mean concentrations of total phosphorus (TP), dissolved phosphorus (DP), particulate phosphorus (PP), NOx-N (nitrate+nitrite), total Kjeldahl nitrogen (TKN), organic-N (ON), and total nitrogen (TN) during most storm events. Exports of TP, DP, ON, and TKN masses were observed only during the coldest periods. The cumulative mass removals were 61% TP, 53% DP, 63% PP, 79% NOx-N, 51% TKN, 45% ON, and 64% TN. The dry-weather nutrient concentrations combined with the environmental conditions at the transitioned basin indicated that sedimentation, adsorption, denitrification, and volume reduction were the removal mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2175/106143015X14362865226077 | DOI Listing |
Materials (Basel)
November 2024
China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
Concrete stress is a key factor influencing the operational safety of concrete dams, and understanding the true distribution and variation of stress is a major research focus in the field of dam engineering. In the heel region of the dam, internal voids in the concrete may allow external water infiltration under high hydraulic head, leading to changes in the concrete's elastic modulus and Biot coefficient. These changes, in turn, affect the effective stress experienced by the concrete.
View Article and Find Full Text PDFTree Physiol
December 2024
Department of Natural Resources and Environmental Science, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
It has been postulated that stemflow, precipitation that flows from plant crowns down along branches and stems to soils, benefits plants that generate it because it increases plant-available soil water near the base of the plant; however, little direct evidence supports this postulation. Were plants' crowns to preferentially route water to their roots, woody plants with large canopies could benefit. For example, piñon and juniper tree encroachment into sagebrush steppe ecosystems could be facilitated by intercepted precipitation routed to tree roots as stemflow, hypothetically reducing water available for shrubs and grasses.
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Civil Engineering, Central South University, Changsha 410075, China; State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
A method for evaluating urban drainage system efficiency and simulating pluvial flooding is presented, incorporating rainwater inlet limitations through an integrated SWMM and terrain structural analysis (the corrected model). The corrected model is calibrated using data from two flood events and compared to an overflow model (non-corrected, without considering inlet restrictions) under the same conditions to assess its performance. The results show that the relative error of the flood peak in simulations ranges from 0.
View Article and Find Full Text PDFNat Med
November 2024
Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
There is a critical unmet need for safe and efficacious neoadjuvant treatment for cisplatin-ineligible patients with muscle-invasive bladder cancer. Here we launched a phase 1b study using the combination of intravesical cretostimogene grenadenorepvec (oncolytic serotype 5 adenovirus encoding granulocyte-macrophage colony-stimulating factor) with systemic nivolumab in cisplatin-ineligible patients with cT2-4aN0-1M0 muscle-invasive bladder cancer. The primary objective was to measure safety, and the secondary objective was to assess the anti-tumor efficacy as measured by pathologic complete response along with 1-year recurrence-free survival.
View Article and Find Full Text PDFSci Rep
October 2024
School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454003, China.
Statistical analysis was conducted on groundwater table data in the Ji Yuan Basin from 2006 to 2018, revealing a continuous downward trend in the groundwater table with imminent depletion of shallow groundwater resources. To ensure the sustainable development of groundwater resources in the area, a quantitative model of groundwater table was successfully constructed using the principles of the Quantitative Theory Type I. This model included seven benchmark variables: rainfall, evaporation, exploitation, hydraulic conductivity, specific yield, lithology of the vadose zone, and land-use type.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!