HMA6 and HMA8 are two chloroplast Cu+-ATPases with different enzymatic properties.

Biosci Rep

CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France Univ. Grenoble Alpes, F-38054 Grenoble, France CEA, DSV, iRTSV, F-38054 Grenoble, France INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France.

Published: April 2015

Copper (Cu) plays a key role in the photosynthetic process as cofactor of the plastocyanin (PC), an essential component of the chloroplast photosynthetic electron transfer chain. Encoded by the nuclear genome, PC is translocated in its apo-form into the chloroplast and the lumen of thylakoids where it is processed to its mature form and acquires Cu. In Arabidopsis, Cu delivery into the thylakoids involves two transporters of the PIB-1 ATPases family, heavy metal associated protein 6 (HMA6) located at the chloroplast envelope and HMA8 at the thylakoid membrane. To gain further insight into the way Cu is delivered to PC, we analysed the enzymatic properties of HMA8 and compared them with HMA6 ones using in vitro phosphorylation assays and phenotypic tests in yeast. These experiments reveal that HMA6 and HMA8 display different enzymatic properties: HMA8 has a higher apparent affinity for Cu(+) but a slower dephosphorylation kinetics than HMA6. Modelling experiments suggest that these differences could be explained by the electrostatic properties of the Cu(+) releasing cavities of the two transporters and/or by the different nature of their cognate Cu(+) acceptors (metallochaperone/PC).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613667PMC
http://dx.doi.org/10.1042/BSR20150065DOI Listing

Publication Analysis

Top Keywords

enzymatic properties
12
hma6 hma8
8
properties hma8
8
hma6
5
chloroplast
4
hma8 chloroplast
4
chloroplast cu+-atpases
4
cu+-atpases enzymatic
4
properties
4
properties copper
4

Similar Publications

Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.

View Article and Find Full Text PDF

Discovery and mechanistic exploration of promiscuous xylosyltransferase based on protein engineering.

Int J Biol Macromol

January 2025

National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.

Glycosylation is an effective means to alter the structure and properties of plant compounds, influencing the pharmacological activity of natural products (NPs) to obtain highly active NPs. In nature, glucosides are the most widely distributed, while other glycosides such as xylosides are less common and present in lower quantities. This is due to the scarcity of xylosyltransferases with substrate promiscuity in nature, and the modification of their catalytic function is also quite challenging.

View Article and Find Full Text PDF

Intracellular spatiotemporal chemical heterogeneities with controlled properties are essential for life. However, creating these heterogeneities artificially is challenging. In this study, we used both acid- and base-producing enzymatic reactions simultaneously and demonstrated that the execution of these reactions in the presence of audible sound can effectively create spatiotemporally ordered pH domains in a solution.

View Article and Find Full Text PDF

Wheat gluten is a by-product of the wheat starch industry, rich in bioactive peptides. Spray drying is an effective method for improving the stability of bioactive compounds. So, the aim of this study was to produce gluten hydrolysate by different proteases (alcalase, pancreatin, and trypsin) at different times (40-200 min).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!