Objectives: To determine whether time to prepare IV medications for hyperkalemia varied by 1) drug, 2) patient weight, 3) calcium salt, and 4) whether these data support the Advanced Cardiac Life Support recommended sequence.
Design: Prospective randomized simulation-based study.
Setting: Single pediatric tertiary medical referral center.
Subjects: Pediatric nurses and adult or pediatric pharmacists.
Interventions: Subjects were randomized to prepare medication doses for one of four medication sequences and stratified by one of three weight categories representative of a neonate/infant, child, or adult-sized adolescent: 4, 20, and 50 kg. Using provided supplies and dosing references, subjects prepared doses of calcium chloride, calcium gluconate, sodium bicarbonate, and regular insulin with dextrose. Because insulin and dextrose are traditionally prepared and delivered together, they were analyzed as one drug. Subjects preparing medications were video-recorded for the purpose of extracting timing data.
Measurements And Main Results: A total of 12 nurses and 12 pharmacists were enrolled. The median (interquartile range) total preparation time for the three drugs was 9.5 minutes (6.4-13.7 min). Drugs were prepared significantly faster for larger children (50 kg, 6.8 min [5.6-9.1 min] vs 20 kg, 9.5 min [8.6-13.0 min] vs 4 kg, 16.3 min [12.7-18.9 min]; p = 0.001). Insulin with dextrose took significantly longer to prepare than the other medications, and there was no difference between the calcium salts: (sodium bicarbonate, 1.9 [0.8-2.6] vs calcium chloride, 2.1 [1.2-3.1] vs calcium gluconate, 2.4 [2.1-3.0] vs insulin with dextrose, 5.1 min [3.7-7.7 min], respectively; p < 0.001). Forty-two percent of subjects (10/24) made at least one dosing error.
Conclusions: Medication preparation for hyperkalemia takes significantly longer for smaller children and preparation of insulin with dextrose takes the longest. This study supports Pediatric Advanced Life Support guidelines to treat hyperkalemia during pediatric cardiac arrest similar to those recommended per Advanced Cardiac Life Support (i.e., first, calcium; second, sodium bicarbonate; and third, insulin with dextrose).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PCC.0000000000000497 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFNutrients
January 2025
Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (Promise) G. D'Alessandro, University of Palermo, 90127 Palermo, Italy.
Metabolic syndrome is a cluster of risk factors, including abdominal obesity, insulin resistance, hypertension, dyslipidemia (intended as an increase in triglyceride levels and a reduction in HDL cholesterol levels), and elevated fasting glucose, that increase the risk of cardiovascular disease and type 2 diabetes. With the rising prevalence of metabolic syndrome, effective dietary interventions are essential in reducing these health risks. The Mediterranean diet, rich in fruits, vegetables, whole grains, legumes, nuts, and olive oil and moderate in fish and poultry, has shown promise in addressing metabolic syndrome and its associated components.
View Article and Find Full Text PDFNutrients
January 2025
National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.
Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.
Nutrients
January 2025
Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.
Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.
View Article and Find Full Text PDFNutrients
January 2025
Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
Background: Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!