Next-Generation Sequencing of Tubal Intraepithelial Carcinomas.

JAMA Oncol

Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor5Comprehensive Cancer Center, University of Michigan, Ann Arbor6Department of Internal Medicine, University of Michigan, Ann Arbor.

Published: November 2015

Importance: High-grade serous carcinoma (HGSC) is the most prevalent and lethal form of ovarian cancer. HGSCs frequently arise in the distal fallopian tubes rather than the ovary, developing from small precursor lesions called serous tubal intraepithelial carcinomas (TICs, or more specifically, STICs). While STICs have been reported to harbor TP53 mutations, detailed molecular characterizations of these lesions are lacking.

Observations: We performed targeted next-generation sequencing (NGS) on formalin-fixed, paraffin-embedded tissue from 4 women, 2 with HGSC and 2 with uterine endometrioid carcinoma (UEC) who were diagnosed as having synchronous STICs. We detected concordant mutations in both HGSCs with synchronous STICs, including TP53 mutations as well as assumed germline BRCA1/2 alterations, confirming a clonal association between these lesions. Next-generation sequencing confirmed the presence of a STIC clonally unrelated to 1 case of UEC, and NGS of the other tubal lesion diagnosed as a STIC unexpectedly supported the lesion as a micrometastasis from the associated UEC.

Conclusions And Relevance: We demonstrate that targeted NGS can identify genetic alterations in minute lesions, such as TICs, and confirm TP53 mutations as early driving events for HGSC. Next-generation sequencing also demonstrated unexpected associations between presumed STICs and synchronous carcinomas, providing evidence that some TICs are actually metastases rather than HGSC precursors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935931PMC
http://dx.doi.org/10.1001/jamaoncol.2015.1618DOI Listing

Publication Analysis

Top Keywords

next-generation sequencing
16
tp53 mutations
12
tubal intraepithelial
8
intraepithelial carcinomas
8
synchronous stics
8
stics
5
next-generation
4
sequencing tubal
4
carcinomas high-grade
4
high-grade serous
4

Similar Publications

Introduction: Locally advanced pancreatic cancer (LAPC) is a borderline unresectable malignancy that presents significant treatment challenges. The management of LAPC remains a complex issue, particularly in patients who are not eligible for surgical resection.

Case: Here, we report the case of a 60-year-old woman diagnosed with LAPC through pathological biopsy who subsequently underwent targeted immunotherapy following the failure of a gemcitabine, oxaliplatin, and S-1 (G&S) chemotherapy regimen.

View Article and Find Full Text PDF

Tuberculous meningitis diagnosis and treatment: classic approaches and high-throughput pathways.

Front Immunol

January 2025

Rehabilitation Medicine Department, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha, Changsha, China.

Tuberculous meningitis (TBM), a severe form of non-purulent meningitis caused by (Mtb), is the most critical extrapulmonary tuberculosis (TB) manifestation, with a 30-40% mortality rate despite available treatment. The absence of distinctive clinical symptoms and effective diagnostic tools complicates early detection. Recent advancements in nucleic acid detection, genomics, metabolomics, and proteomics have led to novel diagnostic approaches, improving sensitivity and specificity.

View Article and Find Full Text PDF

Background: Mitochondrial genes are involved in tumor metabolism in ovarian cancer (OC) and affect immune cell infiltration and treatment responses.

Aim: To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.

Methods: Prognosis, immunotherapy efficacy, and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.

View Article and Find Full Text PDF

Impact of Herpesvirus Detection via Metagenomic Next-Generation Sequencing in Patients with Lower Respiratory Tract Infections.

Infect Drug Resist

January 2025

Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University, Yinzhou People's Hospital, Ningbo, Zhejiang, 315040, People's Republic of China.

Purpose: This study aimed to investigate the impact of herpesvirus detection by metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid (BALF) on lower respiratory tract infections (LRTIs) patients' lung microbiome composition and prognosis.

Patients And Methods: We initially enrolled 234 hospitalized patients with LRTIs who underwent BALF mNGS between February 2022 and May 2023. The study analyzed the clinical manifestations and the pulmonary microbial composition between herpesvirus detection (HD) and non-herpesvirus detection (non-HD) group.

View Article and Find Full Text PDF

Background: Rapid and accurate identification of causative organisms and prompt initiation of pathogen-targeted antibiotics are crucial for managing atypical pneumonia. The widespread application of targeted next-generation sequencing (t-NGS) in clinical practice demonstrates significant targeted advantages in rapid and accurate aetiological identification and antimicrobial resistance genes detection, particularly for difficult-to-culture, rare, or unexpected pathogens. An alarming surge of acquired macrolide resistance (MR) in (MP) presents a substantial challenge for the clinical selection of pathogen-targeted antibiotics worldwide, especially for fluoroquinolone-restricted pediatric patients with limited options available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!