Keratinases are proteolytic enzymes predominantly active when keratin substrates are available that attack disulfide bridges in the keratin to convert them from complex to simplified forms. Keratinases are essential in preparation of animal nutrients, protein supplements, leather manufacture, textile processing, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical and biomedical industries, and waste management. Accordingly, it is necessary to develop a method for continuous production of keratinase from reliable sources that can be easily managed. Microbial keratinase is less expensive than conventionally produced keratinase and can be obtained from fungi, bacteria, and actinomycetes. In this overview, the expansion of information about microbial keratinases and important considerations in keratinase production are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477050PMC
http://dx.doi.org/10.1155/2015/140726DOI Listing

Publication Analysis

Top Keywords

microbial keratinase
8
keratinase production
8
keratinase
5
biotechnological aspects
4
aspects perspective
4
perspective microbial
4
production keratinases
4
keratinases proteolytic
4
proteolytic enzymes
4
enzymes active
4

Similar Publications

Microbial disintegration of wool: An effective and sustainable approach for keratin extraction.

Int J Biol Macromol

December 2024

Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Keratin is an important biopolymer used to develop biomaterials for biomedical and industrial applications. Traditional keratin extraction methods involve the removal of surface lipids using organic solvents, detergents, and energy-intensive processes that often compromise the purity of the extracted keratin. In the present study, wool fibers were microbially disintegrated to isolate cortical cells, achieving a maximum yield of 61.

View Article and Find Full Text PDF

Microbial proteases and keratinases find extensive application in both the detergent and leather industries, as well as in poultry waste management. In this study, a multifunctional strain MH1 exhibiting proteolytic and keratinolytic activities was newly isolated and identified as Bacillus zhangzhouensis. To improve its stability, the proteolytic extract was spray-dried and the stability was assessed during two years of storage.

View Article and Find Full Text PDF

Keratin waste has become an increasingly serious environmental and health hazard. Keratin waste is mainly composed of keratin protein, which is one of the most difficult polymers to break down in nature and is resistant to many physical, chemical, and biological agents. With physical and chemical methods being environment damaging and costly, microbial degradation of keratin using keratinase enzyme is of great significance as it is both environment friendly and cost-effective.

View Article and Find Full Text PDF

The increasing global consumption of poultry meat has led to the generation of a vast quantity of feather keratin waste daily, posing significant environmental challenges due to improper disposal methods. A growing focus is on utilizing keratinous polymeric waste, amounting to millions of tons annually. Keratins are biochemically rigid, fibrous, recalcitrant, physiologically insoluble, and resistant to most common proteolytic enzymes.

View Article and Find Full Text PDF

Recent advancements in protein/enzyme engineering have enabled the production of a diverse array of high-value compounds in microbial systems with the potential for industrial applications. The goal of this review is to articulate some of the most recent protein engineering advances in bacteria, yeast, and other microbial systems to produce valuable substances. These high-value substances include α-farnesene, vitamin B12, fumaric acid, linalool, glucaric acid, carminic acid, mycosporine-like amino acids, patchoulol, orcinol glucoside, d-lactic acid, keratinase, α-glucanotransferases, β-glucosidase, seleno-methylselenocysteine, fatty acids, high-efficiency β-glucosidase enzymes, cellulase, β-carotene, physcion, and glucoamylase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!