Aptamers are promising cell targeting ligands for several applications such as for the diagnosis, therapy, and drug delivery. Especially, in the field of regenerative medicine, stem cell specific aptamers have an enormous potential. Using the combinatorial chemistry process SELEX (Systematic Evolution of Ligands by Exponential enrichment), aptamers are selected from a huge oligonucleotide library consisting of approximately 10(15) different oligonucleotides. Here, we developed a microfluidic chip system that can be used for the selection of cell specific aptamers. The major drawbacks of common cell-SELEX methods are the inefficient elimination of the unspecifically bound oligonucleotides from the cell surface and the unspecific binding/uptake of oligonucleotides by dead cells. To overcome these obstacles, a microfluidic device, which enables the simultaneous performance of dielectrophoresis and electrophoresis in the same device, was designed. Using this system, viable cells can be selectively assembled by dielectrophoresis between the electrodes and then incubated with the oligonucleotides. To reduce the rate of unspecifically bound sequences, electrophoretic fields can be applied in order to draw loosely bound oligonucleotides away from the cells. Furthermore, by increasing the flow rate in the chip during the iterative rounds of SELEX, the selection pressure can be improved and aptamers with higher affinities and specificities can be obtained. This new microfluidic device has a tremendous capability to improve the cell-SELEX procedure and to select highly specific aptamers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474950 | PMC |
http://dx.doi.org/10.1063/1.4922544 | DOI Listing |
Sens Actuators B Chem
January 2025
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Sensitive detection of disease-specific biomarkers with high accuracy is crucial for early diagnosis, therapeutic monitoring, and understanding underlying pathological mechanisms. Traditional methods, such as immunohistochemistry and enzyme-linked immunosorbent assays (ELISA), face limitations due to the complex and expensive production of antibodies. In this context, aptamers, short oligonucleotides with advantages like easy synthesis, low cost, high specificity, and stability, have emerged as promising alternatives for biomolecular sensing.
View Article and Find Full Text PDFNanotheranostics
January 2025
Translational Research Laboratory, Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
Pleural tuberculosis (pTB) is a diagnostic challenge because of its non-specific clinical features, lack of accurate diagnostic tools and paucibacillary nature of the disease. We, here describe the development of a novel magnetic nanoparticle antibody-conjugate and aptamer-based assay (MNp-Ab-Ap assay) targeting 4 different (. ) antigens (GlcB, MPT51, MPT64 and CFP-10) for pTB diagnosis.
View Article and Find Full Text PDFAnal Chem
January 2025
New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
Evaluating tumor radiosensitivity is beneficial for the prediction of treatment efficacy, customization of treatment plans, and minimization of side effects. Tracking the mitochondrial DNA (mtDNA) repair process helps to assess tumor radiosensitivity as mtDNA repair determines the fate of the cell under radiation-induced mtDNA damage. However, current probes developed to monitor levels of DNA repair enzymes suffered from complex synthesis, uncontrollable preparation, limited tumor selectivity, and poor organelle-targeting ability.
View Article and Find Full Text PDFLangmuir
January 2025
Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, Lahore 54000, Pakistan.
By integrating iron-cobalt squarate bimetallic metal-organic framework (Fe-Co-SqBMoF) based smart material (SM) with functional DNA (fDNA), we designed a target responsive fDNA@Fe-Co-SqBMoF bioelectrode that exhibits recognition induced switchable response to serve as a reagentless single step electrochemical apta-switch (REA). The construct takes advantage of fDNA ability to bind and concentrate target on the receptor interface, while Fe-Co-SqBMoF@SM multifeatures to serve as an immobilization matrix and a signal generating electrochemical switch. Fe-Co-SqBMoF was introduced to prepare a redox active pencil graphite electrode (PGE), while fDNA (aptamer) was decorated on the receptor PGE to impart specificity and selectivity.
View Article and Find Full Text PDFJ Microbiol Methods
December 2024
Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran. Electronic address:
Alpha-toxin of Staphylococcus aureus belongs to the pore-forming toxin (PFT) family, which can lyse red and white blood cells. In addition to the existence of the hla gene in the majority of S. aureus strains (about 95 %), higher expression exhibits enhanced pathogenicity to the bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!