The analysis of CAGE (Cap Analysis of Gene Expression) time-course has been proposed by the FANTOM5 Consortium to extend the understanding of the sequence of events facilitating cell state transition at the level of promoter regulation. To identify the most prominent transcriptional regulations induced by growth factors in human breast cancer, we apply here the Complexity Invariant Dynamic Time Warping motif EnRichment (CIDER) analysis approach to the CAGE time-course datasets of MCF-7 cells stimulated by epidermal growth factor (EGF) or heregulin (HRG). We identify a multi-level cascade of regulations rooted by the Serum Response Factor (SRF) transcription factor, connecting the MAPK-mediated transduction of the HRG stimulus to the negative regulation of the MAPK pathway by the members of the DUSP family phosphatases. The finding confirms the known primary role of FOS and FOSL1, members of AP-1 family, in shaping gene expression in response to HRG induction. Moreover, we identify a new potential regulation of DUSP5 and RARA (known to antagonize the transcriptional regulation induced by the estrogen receptors) by the activity of the AP-1 complex, specific to HRG response. The results indicate that a divergence in AP-1 regulation determines cellular changes of breast cancer cells stimulated by ErbB receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503981PMC
http://dx.doi.org/10.1038/srep11999DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
erbb receptors
8
cancer cells
8
gene expression
8
cells stimulated
8
regulation
5
promoter-level expression
4
expression clustering
4
clustering identifies
4
identifies time
4

Similar Publications

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

Leveraging Optical Anisotropy of the Morpho Butterfly Wing for Quantitative, Stain-Free, and Contact-Free Assessment of Biological Tissue Microstructures.

Adv Mater

January 2025

Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.

View Article and Find Full Text PDF

Quality of life for patients on oncology treatments in the Kingdom of Saudi Arabia: a systematic review.

J Pharm Policy Pract

January 2025

Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.

Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.

View Article and Find Full Text PDF

Cell-membrane targeting sonodynamic therapy combination with FSP1 inhibition for ferroptosis-boosted immunotherapy.

Mater Today Bio

February 2025

Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.

Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!