Studies of linkage disequilibrium (LD) and its variation in the genome are of central importance for understanding evolutionary history, population structure, and selective sweeps. Extreme forms of the latter may result in runs of homozygosity (ROH). In human gene mapping, long ROHs are the basis for homozygosity mapping (HM) with length measured in terms of Mb (10 base pairs physical distance). LD varies greatly over the human genome so that long ROHs tend to occur preferentially in regions of high LD and ROHs of the same length in different regions are not strictly comparable. Thus, in human gene mapping, LD appears as a confounder that needs to be taken into account in the interpretation of ROHs. The effect of varying LD can be mitigated by working on a scale of centimorgans (cM, genetic distance) instead of Mb. We demonstrate this effect for HapMap 3 data on chromosome 19 and show examples with different ROH lengths depending on whether physical or genetic lengths are used. These results suggest that HM should preferably be done on genetic rather than physical distances.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ahg.12125DOI Listing

Publication Analysis

Top Keywords

homozygosity mapping
8
human gene
8
gene mapping
8
long rohs
8
leveling playing
4
playing field
4
field homozygosity
4
mapping
4
mapping map
4
map distances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!