The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replicating selected results from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012 were selected on the basis of citations and Altimetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from 'Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis' by Goetz and colleagues, published in Cell in 2011 (Goetz et al., 2011). The key experiments being replicated are those reported in Figures 7C (a-d), Supplemental Figure S2A, and Supplemental Figure S7C (a-c) (Goetz et al., 2011). In these experiments, which are a subset of all the experiments reported in the original publication, Goetz and colleagues show in a subcutaneous xenograft model that stromal caveolin-1 remodels the intratumoral microenvironment, which is correlated with increased metastasis formation. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503935 | PMC |
http://dx.doi.org/10.7554/eLife.04796 | DOI Listing |
Sci Rep
January 2025
College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
Ferroptosis plays a role in tumorigenesis by affecting lipid peroxidation and metabolic pathways; however, its prognostic or therapeutic relevance in pancreatic adenocarcinoma (PAAD) remains poorly understood. In this study, we developed a prognostic ferroptosis-related gene (FRG)-based risk model using cohorts of The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), proposing plausible therapeutics. Differentially expressed FRGs between tumors from TCGA-PAAD and normal pancreatic tissues from Genotype-Tissue Expression were analyzed to construct a prognostic risk model using univariate and multivariate Cox regression and LASSO analyses.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510130, China.
The cell membrane transport capacity and surface targets of multiple myeloma (MM) cells heavily influence chemotherapy and immunotherapy. Here, it is found that caveolin-1 (CAV1), a primary component of membrane lipid rafts and caveolae, is highly expressed in MM cells and is associated with MM progression and drug resistance. CAV1 knockdown decreases MM cell adhesion to stromal cells and attenuates cell adhesion-mediated drug resistance to bortezomib.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Medical Oncology Department, Catalan Institut of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
Triple-negative breast cancer (TNBC) is a highly aggressive subtype with limited therapeutic options, leading to higher relapse rates and mortality. Identifying prognostic biomarkers like caveolin-1 (CAV1) is crucial for personalized treatment. CAV1 influences tumor progression and chemotherapy response, particularly through its interaction with the tumor microenvironment (TME) and cancer metabolism.
View Article and Find Full Text PDFBackground: Pathological fibrosis is a major finding in cardiovascular diseases and can result in arrhythmia and heart failure. Desmosome gene mutations can lead to arrhythmogenic cardiomyopathy (ACM). Among ACM, pathogenic desmoplakin ( ) variants cause a distinctive cardiomyopathy with excessive cardiac fibrosis that could precede ventricular dysfunction.
View Article and Find Full Text PDFPLoS One
July 2024
Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden.
Background: Currently, there are few treatment-predictive and prognostic biomarkers in triple-negative breast cancer (TNBC). Caveolin-1 (CAV1) is linked to chemoresistance and several important processes involved in tumor progression and metastasis, such as epithelial-mesenchymal transition (EMT). Herein, we report that high CAV1 gene expression is an independent factor of poor prognosis in TNBC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!