Disruptions to the genetic integrity of the mammalian spermatozoon play a major role in determining the subsequent developmental trajectory of the embryo. This chapter examines the causative links that connect DNA damage in human spermatozoa and the appearance of mutations in the progeny responsible for a variety of clinical conditions from autism to cancer. Integral to this discussion is an abundance of evidence indicating that human spermatozoa are vulnerable to free radical attack and the generation of oxidative DNA damage. The resolution of this damage appears to be initiated by the spermatozoa but is driven to completion by the oocyte in a round of DNA repair that follows fertilization. The persistence of unresolved oxidative DNA damage following zygote formation has the potential to create mutations/epimutations in the offspring that may have a profound impact on the health of the progeny. It is proposed that the creation of oxidative stress in the male germ line is a consequence of a wide variety of environmental/lifestyle factors that influence the health and well-being of the offspring as a consequence of mutational change induced by the aberrant repair of oxidative DNA damage in the zygote. Factors such as paternal age, subfertility, smoking, obesity, and exposure to a range of environmental influences, including radio-frequency electromagnetic radiation and xenobiotics, have all been implicated in this process. Identifying the contributors to oxidative stress in the germ line and resolving the mechanisms by which such stressors influence the mutational load carried by the progeny will be an important task for the future. This task is particularly pressing, given the extensive use of assisted reproductive technologies to achieve pregnancies in vitro that would have been prevented in vivo by the complex array of mechanisms that nature has put in place to ensure that only the fittest gametes participate in the generative process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-18881-2_2 | DOI Listing |
Toxicol Rep
June 2025
Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia.
The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.
View Article and Find Full Text PDFBioact Mater
April 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
Reactive oxygen species (ROS) at elevated levels trigger oxidative DNA damage, which is a significant factor in psoriasis exacerbation. However, normal ROS levels are essential for cell signaling, cell growth regulation, differentiation, and immune responses. To address this, we developed ROS control strategies inspired by compensatory effects.
View Article and Find Full Text PDFEMBO Rep
January 2025
Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1×5, Ontario, Canada.
Nat Biotechnol
January 2025
Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany.
Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.
View Article and Find Full Text PDFCommun Biol
January 2025
Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!