Transcriptomics is often used to investigate changes in an organism's genetic response to environmental contamination. Data noise can mask the effects of contaminants making it difficult to detect responding genes. Because the number of genes which are found differentially expressed in transcriptome data is often very large, algorithms are needed to reduce the number down to a few robust discriminative genes. We present an algorithm for aggregated analysis of transcriptome data which uses multiple fold-change thresholds (threshold screening) and p values from Bayesian generalized linear model in order to assess the robustness of a gene as a potential indicator for the treatments tested. The algorithm provides a robustness indicator (ROBI) as well as a significance profile, which can be used to assess the statistical significance of a given gene for different fold-change thresholds. Using ROBI, eight discriminative genes were identified from an exemplary dataset (Danio rerio FET treated with chlorpyrifos, methylmercury, and PCB) which could be potential indicators for a given substance. Significance profiles uncovered genetic effects and revealed appropriate fold-change thresholds for single genes or gene clusters. Fold-change threshold screening is a powerful tool for dimensionality reduction and feature selection in transcriptome data, as it effectively reduces the number of detected genes suitable for environmental monitoring. In addition, it is able to unmask patterns in altered genetic expression hidden by data noise and reduces the chance of type II errors, e.g., in environmental screening.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-015-5019-0DOI Listing

Publication Analysis

Top Keywords

transcriptome data
16
threshold screening
12
fold-change thresholds
12
fold-change threshold
8
data noise
8
discriminative genes
8
data
6
genes
6
fold-change
5
screening
4

Similar Publications

Advancing precision and personalized breast cancer treatment through multi-omics technologies.

Am J Cancer Res

December 2024

School of Basic Medical Sciences, Jiamusi University No. 258, Xuefu Street, Xiangyang District, Jiamusi 154007, Heilongjiang, China.

Breast cancer is the most common malignant tumour in women, with more than 685,000 women dying of breast cancer each year. The heterogeneity of breast cancer complicates both treatment and diagnosis. Traditional methods based on histopathology and hormone receptor status are now no longer sufficient.

View Article and Find Full Text PDF

Variant calling using long-read RNA sequencing (lrRNA-seq) can be applied to diverse tasks, such as capturing full-length isoforms and gene expression profiling. It poses challenges, however, due to higher error rates than DNA data, the complexities of transcript diversity, RNA editing events, etc. In this paper, we propose Clair3-RNA, the first deep learning-based variant caller tailored for lrRNA-seq data.

View Article and Find Full Text PDF

Unlabelled: Quantitative understanding of mitochondrial heterogeneity is necessary for elucidating the precise role of these multifaceted organelles in tumor cell development. We demonstrate an early mechanistic role of mitochondria in initiating neoplasticity by performing quantitative analyses of structure-function of single mitochondrial components coupled with single cell transcriptomics. We demonstrate that the large Hyperfused-Mitochondrial-Networks (HMNs) of keratinocytes promptly get converted to the heterogenous Small-Mitochondrial-Networks (SMNs) as the stem cell enriching dose of the model carcinogen, TCDD, depolarizes mitochondria.

View Article and Find Full Text PDF

Neural cell types have classically been characterized by their anatomy and electrophysiology. More recently, single-cell transcriptomics has enabled an increasingly fine genetically defined taxonomy of cortical cell types, but the link between the gene expression of individual cell types and their physiological and anatomical properties remains poorly understood. Here, we develop a hybrid modeling approach to bridge this gap.

View Article and Find Full Text PDF

The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!