Application of divided convective-dispersive transport model to simulate conservative transport processes in planted horizontal sub-surface flow constructed wetlands.

Environ Sci Pollut Res Int

Pollack Mihály Faculty of Engineering and Informatics, Department of Mathematical Sciences, University of Pécs, Pécs, Hungary.

Published: November 2015

We have created a divided convective-dispersive transport (D-CDT) model that can be used to provide an accurate simulation of conservative transport processes in planted horizontal sub-surface flow constructed wetlands filled with coarse gravel (HSFCW-C). This model makes a fitted response curve from the sum of two independent CDT curves, which show the contributions of the main and side streams. The analytical solutions of both CDT curves are inverse Gaussian distribution functions. We used Fréchet distribution to provide a fast optimization mathematical procedure. As a result of our detailed analysis, we concluded that the most important role in the fast upward part of the tracer response curve is played by the main stream, with high porous velocity and dispersion. This gives the first inverse Gaussian distribution function. The side stream shows slower transport processes in the micro-porous system, and this shows the impact of back-mixing and dead zones, too. The significance of this new model is that it can simulate transport processes in this kind of systems more accurately than the conventionally used convective-dispersive transport (CDT) model. The calculated velocity and dispersion coefficients with the D-CDT model gave differences of 24-54% (of velocity) and 22-308% (of dispersion coeff.) from the conventional CDT model, and were closer to actual hydraulic behaviour.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-015-4950-4DOI Listing

Publication Analysis

Top Keywords

transport processes
16
convective-dispersive transport
12
divided convective-dispersive
8
model simulate
8
conservative transport
8
processes planted
8
planted horizontal
8
horizontal sub-surface
8
sub-surface flow
8
flow constructed
8

Similar Publications

Modification of the Se/MoO Rear Interface for Efficient Wide-Band-Gap Trigonal Selenium Solar Cells.

ACS Appl Mater Interfaces

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.

Trigonal selenium (t-Se) is a promising wide-band-gap photovoltaic material with a high absorption coefficient, abundant resources, simple composition, nontoxicity, and a low melting point, making it suitable for absorbers in advanced indoor and tandem photovoltaic applications. However, severe electrical losses at the rear interface of the t-Se absorber, caused by work function and lattice mismatches, limit the voltage output and overall performance. In this study, a strategy to enhance carrier transport and collection by modifying interfacial chemical interactions is proposed.

View Article and Find Full Text PDF

Significant variation in mercury (Hg) bioaccumulation is observed across the diversity of freshwater ecosystems in North America. While there is support for the major drivers of Hg bioaccumulation, the relative influence of different external factors can vary widely among waterbodies, which makes predicting Hg risk across large spatial scales particularly challenging. We modeled Hg bioaccumulation by coupling Hg concentrations in more than 21,000 dragonflies collected across the United States from 2008 to 2021 with a suite of chemical (e.

View Article and Find Full Text PDF

Introduction: Deciphering the diverse molecular mechanisms in living Alzheimer's disease (AD) patients is a big challenge but is pivotal for disease prognosis and precision medicine development.

Methods: Utilizing an optimal transport approach, we conducted graph-based mapping of transcriptomic profiles to transfer AD subtype labels from ROSMAP monocyte samples to ADNI and ANMerge peripheral blood mononuclear cells. Subsequently, differential expression followed by comparative pathway and diffusion pseudotime analysis were applied to each cohort to infer the progression trajectories.

View Article and Find Full Text PDF

Nanoscale water behavior and its impact on adsorption: A case study with CNTs and diclofenac.

J Chem Phys

January 2025

Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil.

Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water.

View Article and Find Full Text PDF

As the global population continues to grow and the pressure on livestock and poultry supply increases, the oceans have become an increasingly important source of quality food for future generations. However, nutrient-rich aquatic product is susceptible to lipid oxidation during storage and transport, reducing its nutritional value and increasing safety risks. Therefore, identifying the specific effects of lipid oxidation on aquatic products has become particularly critical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!