A recently developed uniform-field high resolution ion mobility (IM) quadrupole time of flight (Q-TOF) mass spectrometer is used for evaluating the utility of alternate drift gases for complex sample analyses. This study provides collision cross section comparison for 275 total pesticides including structural isomers in nitrogen, helium, carbon dioxide, nitrous oxide and sulfur hexafluoride drift gases. Furthermore, a set of small molecules and Agilent tune mix compounds were used to study the trends in experimentally derived collision cross section values in argon and the alternate drift gases. Two isomeric trisaccharides, melezitose and raffinose, were used to evaluate the effect of the drift gasses for mobility separation. The hybrid ion mobility Q-TOF mass analyzer used in this study consists of a low pressure uniform field drift tube apparatus coupled to a high resolution Q-TOF mass spectrometer. Conventionally, low pressure ion mobility instruments are operated using helium drift gas to obtain optimal structural information and collision cross-section (CCS) values that compare to theoretical CCS values. The instrument employed in this study uses nitrogen as the standard drift gas but also allows the utility of alternate drift gases for improved structural analysis and selectivity under certain conditions. The use of alternate drift gases with a wide range of polarizabilities allows the evaluation of mobility separation power in terms of induced dipole interactions between the drift gas and the analyte ions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5an00991jDOI Listing

Publication Analysis

Top Keywords

drift gases
20
drift gas
16
alternate drift
16
mass spectrometer
12
ion mobility
12
q-tof mass
12
drift
11
complex sample
8
sample analyses
8
drift tube
8

Similar Publications

Wearable nanocomposite stretch sensors are an exciting new development in biomaterials for biomechanical motion-tracking technology, with applications in the treatment of low back pain, knee rehabilitation, fetal movement tracking, and other fields. When strained, the resistance of the low-cost sensors is reduced, enabling human motion to be monitored using a suitable sensor array. However, current sensor technologies have exhibited significant drift, in the form of increased electrical resistance, if left stored in typical room conditions.

View Article and Find Full Text PDF

Functionalized Dual/Multiligand Metal-Organic Frameworks for Efficient CO Capture under Flue Gas Conditions.

Environ Sci Technol

December 2024

CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, State Key Laboratory of Mesoscience and Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Reducing carbon dioxide (CO) emissions has become increasingly urgent for China, particularly in the industrial sector. Striking a balance between a high CO adsorption capacity and long-term stability under practical conditions is crucial for effectively capturing CO from flue gas. In this study, a series of functionalized MFM-136 adsorbents were synthesized in which -NO and -NH groups were grafted onto the kagome lattice of MFM-136.

View Article and Find Full Text PDF

Background: Monitoring tissue oxygenation is critical in liver recipients. The pulmonary artery catheter (PAC) provides continuous monitoring of mixed venous oxygen saturation (SvO) using fiberoptic reflectance spectrophotometry. Despite the need for in vivo calibration during liver transplantation, recalibration guidelines are absent, and we frequently observed a significant discrepancy between PAC and reference co-oximeter SvO values after graft reperfusion.

View Article and Find Full Text PDF

A chain of GdCe oxides boosted biochars derived from maize straw and sewage sludge (GdCe/MPBs) were fabricated for formaldehyde (HCHO) catalytic decomposition. The ingenerate relationship between the abatement performance and corresponding structural feature was comprehensively evaluated by XPS, in situ DRIFTS, BET, XRD, SEM and H-TPR. Meanwhile, 10%GdCe/MPB exhibited excellent performance, favorable SO and moisture toleration over a broad temperature range from 160 to 320 ℃, where it achieved 96.

View Article and Find Full Text PDF

A crystalline@amorphous MnO (HT@RT) plasma catalyst was successfully constructed in this study to address the problem of odor pollution, especially from volatile organic sulfur compounds (VOSCs) with low olfactory thresholds. Complete conversion of dimethyl sulfide (DMS) at 140 J/L was achieved, and the ozone concentration in the exhaust gas was maintained below 5 ppm. Deeper mineralization of DMS was achieved in the HT@RT sample than in the individual HT and RT samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!