Quantitative distribution of six amino acids in rat retinal layers.

Vision Res

Department of Physiology, Oral Roberts University, Tulsa, OK 74171.

Published: March 1990

AI Article Synopsis

  • The study examined levels of various amino acids in different layers of rat retinas using microdissection and HPLC analysis.
  • Glutamate and glutamine concentrations were found to be high in the inner nuclear and ganglion cell layers, while aspartate was more concentrated in the outer nuclear layer and outer plexiform layer.
  • Glycine and GABA peaked in the inner plexiform layer, and taurine exhibited its highest levels in the outer nuclear layer.

Article Abstract

Concentrations of glutamate, aspartate, glutamine, glycine, GABA, and taurine were determined in samples microdissected from rat retinal layers and assayed by HPLC. Glutamate and glutamine were relatively high in the inner nuclear (INL) and ganglion cell (GCL) layers; aspartate was relatively high in the outer nuclear layer (ONL), outer plexiform layer, and INL. Distributions of glutamate and aspartate did not correlate well with those of enzymes involved in their metabolism. Glycine and GABA were highest in the inner plexiform layer, with increasing concentrations through the INL, and were relatively high in the GCL. Taurine was highest in the ONL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0042-6989(89)90055-2DOI Listing

Publication Analysis

Top Keywords

rat retinal
8
retinal layers
8
glutamate aspartate
8
glycine gaba
8
plexiform layer
8
quantitative distribution
4
distribution amino
4
amino acids
4
acids rat
4
layers concentrations
4

Similar Publications

SIRT4 Protects Retina Against Excitotoxic Injury by Promoting OPA1-Mediated Müller Glial Cell Mitochondrial Fusion and GLAST Expression.

Invest Ophthalmol Vis Sci

January 2025

Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.

Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).

Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.

View Article and Find Full Text PDF

Introduction: Brain ischemia-reperfusion can cause serious and irreversible health problems. Recent studies have suggested that certain flavonoids may help stabilize the correctly folded structure of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations.

Objective: The current study aimed to determine the effect of 3',4'-Dihydroxyflavonol (DiOHF) supplementation for 1 week on lipid peroxidation in the retina tissue following focal brain ischemia-reperfusion in rats.

View Article and Find Full Text PDF

The streptozotocin-induced rat model of diabetic retinopathy presents similarities to the disease observed in humans. After four weeks following the induction of diabetes, the rats experience vision impairment. During this crucial four-week period, significant changes occur, with vascular damage standing out as a clinically significant factor, alongside neovascularization.

View Article and Find Full Text PDF

The protease, a disintegrin and metalloproteinase with thrombospondin type 1 motif member 13 (ADAMTS13), known to cleave only the von Willebrand factor (VWF), has powerful regulatory effects on microvascular platelet adhesion, thrombosis, inflammation, and endothelial dysfunction. We study the protection against diabetes-induced retinal injury in experimental rats by supplementation with recombinant ADAMTS13. We compare human epiretinal membranes and vitreous samples from nondiabetic subjects and patients with proliferative diabetic retinopathy (PDR) and extend in vitro analyses with the use of various immunodetection and spectrofluorimetric methods on rat retina and human retinal glial and endothelial cell cultures.

View Article and Find Full Text PDF

Exploring the impact of nano platinum-hydrogen saline on oxygen-induced retinopathy in neonatal rats.

J Matern Fetal Neonatal Med

December 2025

Department of Pediatrics, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China.

Objective: The objective of this study is to assess the impact of nano platinum-hydrogen saline (Pt NPs + H) on oxygen-induced retinopathy (OIR) in neonatal rats, with the goal to contribute new insights into the therapeutic strategies for retinopathy of prematurity.

Methods: Pt NPs + H formulation was synthesized to address OIR in a rat model. Subsequent examination included the assessment of retinal blood vessel distribution and morphology through hematoxylin and eosin (HE) and isolectin B4 (IB4) staining techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!