Coastal redwood (Sequoia sempervirens), the world's tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, exploring potential flow mechanisms and biological significance. Using isotopic labelling and microCT imaging, we observed that water entered the xylem via bark and reduced tracheid embolization. Moreover, prolonged bark wetting (16 h) partially restored xylem hydraulic conductivity in isolated branch segments and whole branches. Partial hydraulic recovery coincided with an increase in branch water potential from about -5.5 ± 0.4 to -4.2 ± 0.3 MPa, suggesting localized recovery and possibly hydraulic isolation. As bark water uptake rate correlated with xylem osmotic potential (R(2) = 0.88), we suspect a symplastic role in transferring water from bark to xylem. Using historical weather data from typical redwood habitat, we estimated that bark and leaves are wet more than 1000 h per year on average, with over 30 events being sufficiently long (>24 h) to allow for bark-assisted hydraulic recovery. The capacity to uptake biologically meaningful volumes of water via bark and leaves for localized hydraulic recovery throughout the crown during rain/fog events might be physiologically advantageous, allowing for relatively constant transpiration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.12612 | DOI Listing |
Int J Biol Macromol
January 2025
Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Extreme Conditions, Dongguan 523803, China. Electronic address:
The application of chitosan in packaging has always been limited due to its brittle and hygroscopic nature. In this study, hydrophobic short-chain fatty acids (SCFAs) were utilized to modify chitosan to overcome this issue. For the first time, hydrophobic SCFAs, typically hexanoic acid and its homologs, were found to be able to dissolve chitosan in water as well as its hydrophilic analog.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
Resins are complex mixtures of natural constituents containing non-volatile and volatile terpenes, in combination with gums and polyphenols, used since ancient times for their medicinal properties. Current research has evidenced their therapeutic value with a plethora of activities. The main limits of resins and their constituents for their clinical use are low water solubility, poor stability and bioavailability.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Rongcheng Chudao Aquaculture Co., Ltd., Rongcheng 264312, China.
Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.
View Article and Find Full Text PDFCancers (Basel)
January 2025
School of Chemical and Bioprocess Engineering, University College Dublin, D04 V1W8 Dublin, Ireland.
Background/objectives: Despite the numerous advances in glioblastoma multiforme (GBM) treatment, GBM remains as the most malignant and aggressive form of brain cancer, characterized by a very poor outcome, highlighting the ongoing need for the development of new therapeutic strategies. A novel intervention using plasma-assisted local delivery of oncology drugs was developed to mediate the drug delivery, which might improve drug uptake and/or chemotherapeutic action. Topotecan (TPT), a water-soluble topoisomerase I inhibitor with major cytotoxic effects during the S-phase of the cell cycle, was selected as the candidate drug because despite its potent antitumor activity, the systemic administration to the brain is limited due to low crossing of the blood-brain barrier.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Biosciences, Biotechnologies, and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy.
The water channel AQP3 is an aquaglyceroporin expressed in villus epithelial cells, and it plays a role in water transport across human colonic surface cells. Beyond water, AQP3 can mediate glycerol and HO transport. Abnormal expression and function of AQP3 have been found in various diseases often characterized by altered cell growth and proliferation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!