Pilins or fimbrilins are a class of proteins found in bacterial surface pilus, a hair-like surface appendage. Both the Gram-negative and -positive bacteria produce pilins to assemble pili on their cell-surface for different purposes including adherence, twitching motility, conjugation, immunomodulation, biofilm formation, and electron transfer. Immunogenic properties of the pilins make them attractive vaccine candidates. The polymerized pilins play a key role in the initiation of host adhesion, which is a critical step for bacterial colonization and infection. Because of their key role in adhesion and exposure on the cell surface, targeting the pilins-mediated adhesion (anti-adhesion therapy) is also seen as a promising alternative approach for preventing and treating bacterial infections, one that may overcome their ever-increasing repertoires of resistance mechanisms. Individual pilins interact with each other non-covalently to assemble the pilus fiber with the help of associated proteins like chaperones and Usher in Gram-negative bacteria. In contrast, the pilins in Gram-positive bacteria often connect with each other covalently, with the help of sortases. Certain unique structural features present on the pilins distinguish them from one another across different bacterial strains, and these dictate their cellular targets and functions. While the structure of pilins has been extensively studied in Gram-negative pathogenic bacteria, the pilins in Gram-positive pathogenic bacteria have been in only during the last decade. Recently, the discovery of pilins in non-pathogenic bacteria, such as Lactobacillus rhamnosus GG, has received great attention, though traditionally the attention was on pathogenic bacteria. This review summarizes and discusses the current structural knowledge of pilins in Gram-positive bacteria with emphasis on those pilins which are sortase substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/iub.1400 | DOI Listing |
Biofouling
December 2024
Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
Bacteria possess hair-like projections on their surface termed pili. The primary function of a pilus is to enable bacterial cell attachment to the host. Since pili are associated with cell adhesion, they play a major role in bacterial colonization and infection.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
is a Gram-positive anaerobic spore-forming bacterial pathogen of humans and animals. also produces type IV pili (T4P) and has two complete sets of T4P-associated genes, one of which has been shown to produce surface pili needed for cell adherence. One hypothesis about the role of the other set of T4P genes is that they could comprise a system analogous to the type II secretion systems (TTSS) found in Gram-negative bacteria, which is used to export folded proteins from the periplasm through the outer membrane to the extracellular environment.
View Article and Find Full Text PDFAnnu Rev Microbiol
November 2024
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA.
PLoS Genet
August 2024
Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
Sortase-assembled pili contribute to virulence in many Gram-positive bacteria. In Enterococcus faecalis, the endocarditis and biofilm-associated pilus (Ebp) is polymerized on the membrane by sortase C (SrtC) and attached to the cell wall by sortase A (SrtA). In the absence of SrtA, polymerized pili remain anchored to the membrane (i.
View Article and Find Full Text PDFmBio
September 2024
Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA.
Unlabelled: During pilus assembly within the Gram-positive bacterial envelope, membrane-bound sortase enzymes sequentially crosslink specific pilus protein monomers through their cell wall sorting signals (CWSS), starting with a designated tip pilin, followed by the shaft made of another pilin, ultimately anchoring the fiber base pilin to the cell wall. To date, the molecular determinants that govern pilus tip assembly and the underlying mechanism remain unknown. Here, we addressed this in the model organism .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!