A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells.

Nat Commun

1] Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander University Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany. [2] Bavarian Center for Applied Energy Research (ZAE Bayern), Haberstrasse 2a, 91058 Erlangen, Germany. [3] Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany.

Published: July 2015

The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518253PMC
http://dx.doi.org/10.1038/ncomms8730DOI Listing

Publication Analysis

Top Keywords

generic concept
8
photovoltaic cells
8
hybrid triple-junction
8
triple-junction
5
concept overcome
4
overcome bandgap
4
bandgap limitations
4
limitations designing
4
designing highly
4
highly efficient
4

Similar Publications

This research focuses on Generation Z (Gen Z) students, specifically those in nursing colleges. Gen Z individuals display unique characteristics in terms of thinking, personality, lifestyle, and learning preferences compared to preceding generations, necessitating adaptations in teaching methodologies within nursing schools. This study explores the effectiveness of the Jigsaw Technique (JST) in engaging first-year undergraduate nursing students in learning process.

View Article and Find Full Text PDF

Emerging evidence suggests that inhibitory control (IC) plays a pivotal role in science and maths counterintuitive reasoning by suppressing incorrect intuitive concepts, allowing correct counterintuitive concepts to come to mind. Neuroimaging studies have shown greater activation in the ventrolateral and dorsolateral pFCs when adults and adolescents reason about counterintuitive concepts, which has been interpreted as reflecting IC recruitment. However, the extent to which neural systems underlying IC support science and maths reasoning remains unexplored in children.

View Article and Find Full Text PDF

New and Emerging Biological Therapies for Myasthenia Gravis: A Focussed Review for Clinical Decision-Making.

BioDrugs

January 2025

Department of Neurology, Neuroscience Clinical Research Center (NCRC) and Integrated Myasthenia Gravis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Charitéplatz 1, Germany.

Myasthenia gravis (MG) is a rare autoimmune disease characterised by exertion-induced muscle weakness that can lead to potentially life-threatening myasthenic crises. Detectable antibodies are directed against specific postsynaptic structures of the neuromuscular junction. MG is a chronic condition that can be improved through therapies, but to date, not cured.

View Article and Find Full Text PDF

Fully guided system for position-predictable autotransplantation of teeth: A randomized clinical trial.

Int Endod J

January 2025

Department of Oral and Maxillofacial Surgery, Guangdong Engineering Research Center of Oral Restoration and Reconstruction Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.

Aim: Autotransplantation of teeth (ATT) is a viable biological method for addressing dental defects. The objective was to achieve occlusal reconstruction-orientated ATT to enhance functionality and obtain optimal location and adjacency. This study proposes a new concept of a guide (a fully guided system) to achieve position-predictable ATT.

View Article and Find Full Text PDF

Introduction: Graft optimization is a necessity in order to develop uterus transplantation from brain-dead donors, as a complement to living donors, as these grafts are rare and the last organs retrieved in multiple organ donation. The aim of this study was to assess the feasibility and interest of hypothermic machine perfusion (HMP) in uterus transplantation using a porcine model; secondary outcomes were the evaluation of the graft's tolerance to a prolonged cold ischaemia time and to find new biomarkers of uterus viability.

Material And Methods: Fifteen uterus allotransplantations were performed in a porcine model, after 18 h of cold ischaemia, divided in three groups: Static cold storage in a HTK solution, HMP (with the VitaSmart (™) machine Bridge to Life Ltd.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!