We studied dipeptidyl peptidase IV (DPP-IV, CD26) expression in different T helper cells and serum soluble DPP-IV/sCD26 levels in rheumatoid arthritis (RA) patients, correlated these with disease activity score (DAS), and examined how they were affected by different therapies, conventional or biological (anti-TNF, anti-CD20 and anti-IL6R or Ig-CTLA4). The percentage of CD4+CD45R0+CD26- cells was greatly reduced in patients (up to 50%) when compared with healthy subjects. Three other subsets of CD4 cells, including a CD26high Th1-associated population, changed variably with therapies. Data from these subsets (frequency and staining density) significantly correlated with DAS28 or DAS28 components but different in each group of patients undergoing the different therapies. Th17 and Th22 subsets were implicated in RA as independent CCR4+ and CCR4- populations each, with distinct CD26 expression, and were targeted with varying efficiency by each therapy. Serum DPP-IV activity rather than sCD26 levels was lower in RA patients compared to healthy donors. DPP-IV and sCD26 serum levels were found related to specific T cell subsets but not to disease activity. We conclude that, according to their CD26 expression, different cell subsets could serve to monitor RA course, and an uncharacterized T helper CD26- subset, not targeted by therapies, should be monitored for early diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503416 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131992 | PLOS |
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Healthcare Administration, Asia University, 40454 Taichung, Taiwan. Electronic address:
Introduction: Dipeptidyl peptidase-4 is known to be involved in the progression of several fibrogenic diseases, but its association with oral submucous fibrosis remains unclear. This study aims to ascertain whether dipeptidyl peptidase-4 plays a role in the pathogenesis of arecoline-induced oral submucous fibrosis.
Methods: We assessed the expression of dipeptidyl peptidase-4 in arecoline-treated epithelial cells and the exosomes derived from cells.
J Biol Chem
January 2025
Division of Experimental Animal, Hidaka Branch, Biomedical Research Center, Saitama Medical University, Saitama, Japan; Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan. Electronic address:
Recent success with the use of glucagon-like peptide-1 (GLP-1) receptor analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of patients with diabetes has highlighted the role of the intestine as an endocrine organ. Gut-derived hormones, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and ghrelin, have important roles in the control of energy metabolism and food intake, and are associated with the metabolic syndrome. In this study, we isolated and identified a new intestine-derived hormone, betagenin, and showed that it stimulates insulin secretion and β-cell proliferation and suppresses β-cell apoptosis.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China.
Dipeptidyl peptidase 4 (DPP4) is a serine protease widely distributed in membrane-bound and soluble forms in various tissues and organs throughout the body. DPP4 plays a role in inflammation, immune regulation, cell growth, migration and differentiation. The role of DPP4 in tumors has garnered increasing attention.
View Article and Find Full Text PDFVet Microbiol
February 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:
bioRxiv
December 2024
Laboratorio de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
Dipeptidyl peptidase 4 (DPP4) is a transmembrane serine exopeptidase abundantly expressed in the kidneys, predominantly in the proximal tubule (PT); however, its non-enzymatic functions in this nephron segment remain poorly understood. While DPP4 physically associates with the Na/H exchanger isoform 3 (NHE3) and its inhibitors exert natriuretic effects, the DPP4 role in blood pressure (BP) regulation remains controversial. This study investigated the effects of PT-specific deletion ( ) and global deletion ( ) on systolic blood pressure (SBP), natriuresis, and NHE3 regulation under baseline and angiotensin II (Ang II)-stimulated conditions in both male and female mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!