Considering the age and sex-dependent trend in the manifestation of various diseases, as well as an important pathogenic role of circulatory disorders, we decided to study the age-dependent changes in the physical properties of RBCs membrane proteins (their electric charge and molecular weight) in healthy people of different sex (males and females) and age. Blood of 56 healthy volunteers (Tbilisi, Georgia) of different sex and gender was studied (the patients were divided in 8 groups (7 patients in each groups): 1 - 18-25 years old male, 2 - 18-25 years old female, 3 - 25-44 years old male, 4 - 25-44 years old female, 5 - 44-60 years old male, 6 - 44-60 years old female; 7 - 60-80 years old male, 8 - 70-80 years old female). In groups 6 and 8 were women in menopause was determined according 12 months of amenorrhea. Individuals often consume alcohol addicts, pregnant women and patients with chronic diseases were excluded from the study. The study protocol was approved by Ethical Committee of the Tbilisi State Medical University. RBCs membrane proteins have been extracted from human heparinized blood and their mobility was studied by electrophoretic method. The electrophoretic mobility of RBCs membrane proteins decreases with age of healthy volunteers, that indicates decrease of total charge of proteins, depending on the electrically charged amino acids content. In female patients the electrophoretic mobility of the RBCs membrane proteins especially intensively decreases in period of menopause. Increase of molecular weight of proteins (100-200 kDa) from RBCs' membranes of alder age group was manifested. Intensively decrease electrophoretic mobility of erythrocytes membrane proteins from female patients in period of menopause indicates on estrogen related mechanism of the regulation of membrane protein conformation and composition in females. Increased content of high molecular weight proteins in the RBCs membranes from patients of older age groups may be caused to disorders of protein-protein interaction mechanisms, their ubiquitinylation or oligomerisation and formation of high molecular weight complexes of inactivated proteins in aged RBCs. These processes play important role in regulation of the RBCs shape and stability. Identified sex- and age-related alterations in RBCs membranes proteins affect the rheological properties of blood and can be considered as the etiologic and pathogenic markers of various diseases.

Download full-text PDF

Source

Publication Analysis

Top Keywords

membrane proteins
20
rbcs membrane
16
molecular weight
16
years male
16
years female
16
electrophoretic mobility
12
proteins
11
membranes proteins
8
rbcs
8
healthy volunteers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!