In recent years, candidate genes and proteins implicated in platelet function have been identified by various genomic approaches. To elucidate their exact role, we aimed to develop a method to apply miRNA interference in platelet progenitor cells by using GPIbα as a proof-of-concept target protein. After in silico and in vitro screening of siRNAs targeting GPIbα (siGPIBAs), we developed artificial miRNAs (miGPIBAs), which were tested in CHO cells stably expressing GPIb-IX complex and megakaryoblastic DAMI cells. Introduction of siGPIBAs in CHO GPIb-IX cells resulted in 44 to 75% and up to 80% knockdown of GPIbα expression using single or combined siRNAs, respectively. Conversion of siGPIBAs to miGPIBAs resulted in reduced silencing efficiency, which could however be circumvented by tandem integration of two hairpins targeting different regions of GPIBA mRNA where 72% GPIbα knockdown was achieved. CHO GPIb-IX cells transfected with the miGPIBA construct displayed a significant decrease in their ability to aggregate characterized by lower aggregate numbers and size compared to control CHO GPIb-IX cells. More importantly, we successfully silenced GPIbα in differentiating megakaryoblastic DAMI cells that exhibited morphological changes associated with actin organization. In conclusion, we here report the successful use of miRNA technology to silence a platelet protein in megakaryoblastic cells and demonstrate its usefulness in functional assays. Hence, we believe that artificial miRNAs are suitable tools to unravel the role of a protein of interest in stem cells, megakaryocytes and platelets, thereby expanding their application to novel fields of basic and translational research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503784 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132899 | PLOS |
J Chem Inf Model
May 2024
Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
The cyclic peptide OS1 (amino acid sequence: CTERMALHNLC), which has a disulfide bond between both termini cysteine residues, inhibits complex formation between the platelet glycoprotein Ibα (GPIbα) and the von Willebrand factor (vWF) by forming a complex with GPIbα. To study the binding mechanism between GPIbα and OS1 and, therefore, the inhibition mechanism of the protein-protein GPIbα-vWF complex, we have applied our multicanonical molecular dynamics (McMD)-based dynamic docking protocol starting from the unbound state of the peptide. Our simulations have reproduced the experimental complex structure, although the top-ranking structure was an intermediary one, where the peptide was bound in the same location as in the experimental structure; however, the β-switch of GPIbα attained a different conformation.
View Article and Find Full Text PDFToxins (Basel)
March 2022
Graduate School of Medical Sciences, Fujita Health University, 1-98 Kutsukake-cho, Toyoake 470-1192, Japan.
Bitiscetin-1 (aka bitiscetin) and bitiscetin-2 are C-type lectin-like proteins purified from the venom of (puff adder). They bind to von Willebrand factor (VWF) and-at least bitiscetin-1-induce platelet agglutination via enhancement of VWF binding to platelet glycoprotein Ib (GPIb). Bitiscetin-1 and -2 bind the VWF A1 and A3 domains, respectively.
View Article and Find Full Text PDFJ Thromb Haemost
June 2022
Aflac Cancer and Blood Disorders Center, Departments of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA.
Background: Glycoprotein (GP)Ibα plays a critical role in regulating platelet clearance. Recently, we identified the mechanosensory domain (MSD) in GPIbα and reported evidence to suggest that unfolding of the GPIbα MSD induces exposure of the Trigger sequence therein and subsequent GPIb-IX signaling that accelerates platelet clearance. In a commonly used transgenic mouse model, IL4R-IbαTg, where the Trigger sequence is constitutively exposed, constitutive GPIb-IX-mediated cellular signals are present.
View Article and Find Full Text PDFBlood Adv
April 2022
Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy; and.
Gain-of-function (GOF) variants in GP1BA cause platelet-type von Willebrand disease (PT-VWD), a rare inherited autosomal dominant bleeding disorder characterized by enhanced platelet GPIbα to von Willebrand factor (VWF) interaction, and thrombocytopenia. To date, only 6 variants causing PT-VWD have been described, 5 in the C-terminal disulfide loop of the VWF-binding domain of GPIbα and 1 in the macroglycopeptide. GOF GP1BA variants generate a high-affinity conformation of the C-terminal disulfide loop with a consequent allosteric conformational change on another region of GPIbα, the leucine-rich-repeat (LRR) domain.
View Article and Find Full Text PDFJ Thromb Haemost
August 2021
Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
Background: Platelets' initial recognition of endothelial damage proceeds through the interaction between collagen, plasma von Willebrand factor (VWF), and the platelet glycoprotein (GP)Ib-IX complex (CD42). The GPIb-IX complex consists of one GPIbα, one GPIX, and two GPIbβ subunits. Once platelets are immobilized to the subendothelial matrix, shear generated by blood flow unfolds a membrane-proximal mechanosensory domain (MSD) in GPIbα, exposing a conserved trigger sequence and activating the receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!