Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes.

PLoS One

Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; German Center for Neurodegenerative Disease, Magdeburg, Germany.

Published: April 2016

The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503586PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132702PLOS

Publication Analysis

Top Keywords

dna double-strand
16
double-strand breaks
16
magnetic resonance
8
resonance imaging
8
isolated human
8
unstimulated mononuclear
8
mononuclear blood
8
blood cells
8
cells exposed
8
static magnetic
8

Similar Publications

Mitochondrial epigenetics, particularly mtDNA methylation, is a flourishing field of research. MtDNA methylation appears to play multiple roles, including regulating mitochondrial transcription, cell metabolism and mitochondrial inheritance. In animals, bivalves with doubly uniparental inheritance (DUI) of mitochondria are the exception to the rule of maternal mitochondrial inheritance since DUI also involve a paternal mtDNA transmitted from the father to sons.

View Article and Find Full Text PDF

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.

View Article and Find Full Text PDF

Focusing on the Yashkun population of Gilgit-Baltistan, an administrative territory in northern Pakistan, our study investigated mtDNA haplotypes as indicators of ancient gene flow and genetic diversity. Genomic DNA was extracted and evaluated for quality using agarose gel electrophoresis. The complete control region of mtDNA (nt 16024-576) was amplified via PCR, and sequencing was performed using the Big Dye Terminator Kit on an Applied Biosystems Genetic Analyzer.

View Article and Find Full Text PDF

Breast cancer is a leading cause of cancer-related deaths among women globally. It is imperative to explore novel biomarkers to predict breast cancer treatment response as well as progression. Here, we collected six breast cancer samples and paired normal tissues for high-throughput sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!