Coronene·TCNQ cocrystal microrods, coronene microrods, and TCNQ microsheets were constructed by a drop-casting method. Prototype devices were fabricated and their field-effect-transistor (FET) performances were investigated. It is found that coronene·TCNQ microrods had exhibited an n-type characteristic and showed better FET performances than TCNQ microsheets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr02778k | DOI Listing |
J Phys Chem Lett
March 2023
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
Organic charge transfer (CT) cocrystals open a new door for the exploitation of low-dimensional near-infrared (NIR) emitters by a convenient self-assembly approach. However, research about the fabrication of sheet-like NIR-emitting microstructures that are significant for structural construction and integrated application is limited by the unidirectional molecular packing mode. Herein, via regulation of the biaxial intermolecular CT interaction, single-crystalline microsheets with remarkable NIR emission from 720 to 960 nm were synthesized via the solution self-assembly process of dithieno[3,2-:2',3'-]thiophene and 7,7,8,8-tetracyanoquinodimethane.
View Article and Find Full Text PDFNanoscale
August 2015
Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, P. R. China.
Coronene·TCNQ cocrystal microrods, coronene microrods, and TCNQ microsheets were constructed by a drop-casting method. Prototype devices were fabricated and their field-effect-transistor (FET) performances were investigated. It is found that coronene·TCNQ microrods had exhibited an n-type characteristic and showed better FET performances than TCNQ microsheets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!