X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. Here, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. The calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach--a capability critical for advancing nanofocused x-ray diffraction microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.40.003241DOI Listing

Publication Analysis

Top Keywords

bragg diffraction
8
diffraction patterns
8
bragg
6
diffraction
5
efficient modeling
4
modeling bragg
4
bragg coherent
4
x-ray
4
coherent x-ray
4
x-ray nanobeam
4

Similar Publications

Convergent-beam attosecond x-ray crystallography.

Struct Dyn

January 2025

Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.

View Article and Find Full Text PDF

Discontinuous solid-solid phase transformations play a pivotal role in determining the properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LiNiMnO within an operational Li metal coin cell. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle.

View Article and Find Full Text PDF

The use of neutron reflectors is an effective method for improving the quality of neutron sources and neutron delivery systems. In this work, we further develop the method based on the Bragg scattering of neutrons in crystals with large interplanar distances. We compare samples of differently prepared fluorine intercalated graphites by measuring the total cross section for the interaction of neutrons with the samples, depending on the neutron wavelength.

View Article and Find Full Text PDF

Reinterpretation of Report of Tetrataenite in Bulk Alloy Castings.

Adv Sci (Weinh)

December 2024

Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.

After the publication of "Direct formation of hard-magnetic tetrataenite in bulk alloy castings" Ivanov et al., Advanced Science 10 (2022) 2204315, the authors identified a potential misinterpretation of the experimental data. Further work confirms that the original conclusions cannot be supported, and accordingly the paper is retracted.

View Article and Find Full Text PDF

Multiferroic materials that exhibit interacting and coexisting properties, like ferroelectricity and ferromagnetism, possess significant potential in the development of novel technologies that can be controlled through the application of external fields. They also exhibit varying regions of polarity, known as domains, with the interfaces that separate the domains referred to as domain walls. In this study, using three-dimensional (3D) bragg coherent diffractive imaging (BCDI), we investigate the dynamics of multiferroic domain walls in a single hexagonal dysprosium manganite (h-DyMnO ) nanocrystal under varying applied electric field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!