This investigation deals with the use of agro-industrial waste, namely groundnut oil cake (GOC), for phytase production by the fungi Aspergillus niger NCIM 563. Plackett-Burman design (PBD) was used to evaluate the effect of 11 process variables and studies here showed that phytase production was significantly influenced by glucose, dextrin, distilled water, and MgSO4 · 7H2O. The use of response surface methodology (RSM) by Box-Behnken design (BBD) of experiments further enhanced the production by a remarkable 36.67-fold from the original finding of 15 IU/gds (grams of dry substrate) to 550 IU/gds. This is the highest solid-state fermentation (SSF) phytase production reported when compared to other microorganisms and in fact betters the best known by a factor of 2. Experiments carried out using dried fermented koji for phosphorus and mineral release and also thermal stability have shown the phytase to be as efficient as the liquid enzyme extract. Also, the enzyme, while exhibiting optimal activity under acidic conditions, was found to have significant activity in a broad range of pH values (1.5-6.5). The studies suggest the suitability of the koji supplemented with phytase produced in an SSF process by the "generally regarded as safe" (GRAS) microorganism A. niger as a cost-effective value-added livestock feed when compared to that obtained by submerged fermentation (SmF).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10826068.2015.1045606 | DOI Listing |
Biotechnol Prog
January 2025
Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
Filamentous fungi are a cornerstone in the biotechnological production of enzymes, proteins, and organic acids. However, challenges in understanding and controlling the relationship between morphology and productivity can limit their application. This study addresses these challenges using Thermothelomyces thermophilus, a promising thermophilic fungus known for the production of thermostable enzymes.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Departamento de Zootecnia, Universidade Federal da Paraíba, Rodovia PB-079, Areia 58397-000, PB, Brazil.
In tropical and subtropical climate regions, heat stress is one of the main causes of production losses in laying quails, aggravated by the antinutritional effects of the phytate in diet ingredients, which negatively affect the bioavailability of minerals, especially calcium and phosphorus. This situation results in a reduction in production and the quality of eggs from commercial laying quails. Several nutritional strategies are utilized to reduce the adverse effects of high temperatures and antinutritional factors such as phytate.
View Article and Find Full Text PDFFood Sci Biotechnol
January 2025
Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India.
Appl Biochem Biotechnol
January 2025
College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China.
Phosphorus in soil mostly exists in complex compounds such as phytic acid, which reduces the effectiveness of phosphorus and limits agricultural production. Phytase has the activity of hydrolyzing phytate into phosphate. The mineralization of phytate in soil by phytase secreted by microorganisms is an effective way to improve the utilization rate of phytate.
View Article and Find Full Text PDFPoult Sci
December 2024
Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea. Electronic address:
The need for sustainable and safe alternatives to antibiotic growth promoters has driven researchers to explore organic acids (OAs) inclusion in broiler diets. Citric acid (CA), a notable OA, has emerged as a promising alternative due to its various physiological benefits, including improved nutrient digestibility, antioxidant properties, and enhanced weight gain. Despite the improved growth performance, the feed conversion ratio (FCR) does not seem to be consistently affected by CA inclusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!