Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The most popular model to explain how prehensile movements are organized assumes that they comprise two "components", the reaching component encoding information regarding the object's spatial location and the grasping component encoding information on the object's intrinsic properties such as size and shape. Comparative kinematic studies on grasping behavior in the humans and in macaques have been carried out to investigate the similarities and differences existing across the two species. Although these studies seem to favor the hypothesis that macaques and humans share a number of kinematic features it remains unclear how the reaching and grasping components are coordinated during prehension movements in free-ranging macaque monkeys. Twelve hours of video footage was filmed of the monkeys as they snatched food items from one another (i.e., snatching) or collect them in the absence of competitors (i.e., unconstrained). The video samples were analyzed frame-by-frame using digitization techniques developed to perform two-dimensional post-hoc kinematic analyses of the two types of actions. The results indicate that only for the snatching condition when the reaching variability increased there was an increase in the amplitude of maximum grip aperture. Besides, the start of a break-point along the deceleration phase of the velocity profile correlated with the time at which maximum grip aperture occurred. These findings suggest that macaques can spatially and temporally couple the reaching and the grasping components when there is pressure to act quickly. They offer a substantial contribution to the debate about the nature of how prehensile actions are programmed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503540 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132937 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!