Background: Graves' orbitopathy (GO) is the main extrathyroidal manifestation associated with Graves' disease (GD). It is characterized by reduced eye motility due to an increased volume of orbital fat and/or of extraocular muscles (EOMs) infiltrated by fibrosis and adipose tissue. The pathogenetic mechanisms leading to fibrosis and adipogenesis are mainly based on the interaction between orbital fibroblasts and immune cells (lymphocytes and mast cells) infiltrating the GO EOMs.
Methods: Analysis of the morphological status, oxidative stress (OS), and antioxidant defenses in the orbital muscular cells and adipocytes in GO patients compared with controls was conducted.
Results: Both cell types are affected by OS, as shown by the increased expression of 4-hydroxynonenal, which leads to apoptosis in muscular cells. However, the EOMs and the adipocytes possess antioxidant defenses (peroxiredoxin 5 and catalase) against the OS, which are also upregulated in thyrocytes in GD. The expression of adiponectin (ApN) and proliferator-activated receptor gamma (PPARγ) is also increased in GO muscular cells and adipocytes. OS and antioxidant proteins expression are correlated to the level of blood antithyrotropin receptor antibodies (TSHR-Ab).
Conclusion: Even when TSHR-Ab level is normalized, OS and antioxidant protein expression is high in EOM muscular cells and adipocytes in GO compared with controls. This justifies a supplementation with antioxidants in active as well as chronic GO patients. Orbital muscular cells are also the sources of PPARγ and ApN, which have direct or indirect local protective effects against OS. Modulation of these proteins could be considered as a future therapeutic approach for GO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/thy.2015.0087 | DOI Listing |
Cells
December 2024
Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy.
Zebrafish () have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China.
This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea.
The mechanisms underlying exercise-induced insulin sensitization are of great interest, as exercise is a clinically critical intervention for diabetic patients. Some microRNAs (miRs) are secreted from skeletal muscle after exercise where they regulate insulin sensitivity, and have potential as diagnostic markers in diabetic patients. miR-204 is well-known for its involvement in development, cancer, and metabolism; however, its role in exercise-induced glycemic control remains unclear.
View Article and Find Full Text PDFCommun Biol
January 2025
Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
Mitochondria play a crucial role in maintaining cellular health. It is interesting that the shape of mitochondria can vary depending on the type of cell, mitochondrial function, and other cellular conditions. However, there are limited studies that link functional assessment with mitochondrial morphology evaluation at high magnification, even fewer that do so in situ and none in human muscle biopsies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!