Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor containing a carbohydrate recognition domain in its extracellular portion and an immunoreceptor tyrosine–based inhibitory motif, which transduces negative signals into cells, in its cytoplasmic portion. Previously, we showed that Dcir(–/–) mice spontaneously develop autoimmune diseases such as enthesitis and sialadenitis due to excess expansion of dendritic cells (DCs), suggesting that DCIR is critically important for the homeostasis of the immune system. In this report, we analyzed the role of DCIR in the development of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease model for multiple sclerosis. We found that EAE was exacerbated in Dcir(–/–) mice associated with severe demyelination of the spinal cords. The number of infiltrated CD11c(+) DCs and CD4(+) T cells into spinal cords was increased in Dcir(–/–) mice. Recall proliferative response of lymph node cells was higher in Dcir(–/–) mice compared with wild-type mice. These observations suggest that DCIR is an important negative regulator of the immune system, and Dcir(–/–) mice should be useful for analyzing the roles of DCIR in an array of autoimmune diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427725PMC
http://dx.doi.org/10.1538/expanim.14-0079DOI Listing

Publication Analysis

Top Keywords

dcir–/– mice
20
experimental autoimmune
8
autoimmune encephalomyelitis
8
c-type lectin
8
lectin receptor
8
autoimmune diseases
8
immune system
8
spinal cords
8
mice
7
dcir
6

Similar Publications

Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.

View Article and Find Full Text PDF

ATAD1 Regulates Neuronal Development and Synapse Formation Through Tuning Mitochondrial Function.

Int J Mol Sci

December 2024

Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.

Mitochondrial function is essential for synaptic function. ATAD1, an AAA+ protease involved in mitochondrial quality control, governs fission-fusion dynamics within the organelle. However, the distribution and functional role of ATAD1 in neurons remain poorly understood.

View Article and Find Full Text PDF

Notably, the C-X-C Motif Chemokine Ligand 12/C-X-C Chemokine Receptor Type 4 (CXCL12/CXCR4) signalling pathway's activation is markedly increased in a mouse model of abdominal aortic aneurysms (AAA). Nonetheless, the precise contribution of this pathway to AAA development remains to be elucidated. The AAA mouse model was induced by local incubation with elastase and oral administration of β-aminopropionitrile.

View Article and Find Full Text PDF

Ruvbl1 silencing affects reproduction of the corn planthopper, Peregrinus maidis.

PLoS One

January 2025

Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.

Ruvbl1 (also known as TIP49, Pontin) encodes an ATPase of the AAA+ protein superfamily involved in several cellular functions, including chromatin remodeling, control of transcription, and cellular development (motility, growth, and proliferation). While its role has been well established in model organisms including vertebrates and invertebrates (e.g.

View Article and Find Full Text PDF

Intravenous injection of PCSK9 gain-of-function mutation in C57BL/6J background mice on Angiotensin II-induced AAA.

Biochim Biophys Acta Mol Basis Dis

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. Electronic address:

Objective: This study was performed to compare the incidence of Angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) between intravenous and intraperitoneal injection of AAV8.mPCSK9 in wild-type (WT) mice with C57BL/6J background and the pathological differences of above model in WT and ApoE mice.

Design: Male WT mice were injected intraperitoneally or intravenously with either a AAV8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!