A novel thiocyanate bridged 2D MOF, [CdL(μ-1,3-SCN)2]n, [HL = 2-(2-(ethylamino)ethyliminomethyl)-6-ethoxyphenol] has been synthesized and characterized by X-ray crystallography. The band gap of the synthesized material in the solid state has been determined by experimental measurements and compared with the theoretical value obtained from DFT calculations. For the first time, the single crystal X-ray crystallography of a MOF has been reported along with its applicability in photosensitive devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cc04323a | DOI Listing |
Struct Dyn
January 2025
Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA.
There is a growing understanding of the structural dynamics of biological molecules fueled by x-ray crystallography experiments. Time-resolved serial femtosecond crystallography (TR-SFX) with x-ray Free Electron Lasers allows the measurement of ultrafast structural changes in proteins. Nevertheless, this technique comes with some limitations.
View Article and Find Full Text PDFProteins drive biochemical transformations by transitioning through distinct conformational states. Understanding these states is essential for modulating protein function. Although X-ray crystallography has enabled revolutionary advances in protein structure prediction by machine learning, this connection was made at the level of atomic models, not the underlying data.
View Article and Find Full Text PDFWe introduce Hydrogen-Exchange Experimental Structure Prediction (HX-ESP), a method that integrates hydrogen exchange (HX) data with molecular dynamics (MD) simulations to accurately predict ligand binding modes, even for targets requiring significant conformational changes. Benchmarking HX-ESP by fitting two ligands to PAK1 and four ligands to MAP4K1 (HPK1), and comparing the results to X-ray crystallography structures, demonstrated that HX-ESP successfully identified binding modes across a range of affinities significantly outperforming flexible docking for ligands necessitating large conformational adjustments. By objectively guiding simulations with experimental HX data, HX-ESP overcomes the long timescales required for binding predictions using traditional MD.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography.
View Article and Find Full Text PDFJ Biol Chem
January 2025
T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, 21218, USA. Electronic address:
Truncated hemoglobins (TrHbs) have an ancient origin and are widely distributed in microorganisms where they often serve roles other than dioxygen transport and storage. In extremophiles, these small heme proteins must have features that secure function under challenging conditions: at minimum, they must be folded, retain the heme group, allow substrates to access the heme cavity, and maintain their quaternary structure if present and essential. The genome of the obligate psychropiezophile Shewanella benthica strain KT99 harbors a gene for a TrHb belonging to a little-studied clade of globins (subgroup 2 of group N).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!